какие микроэлементы нужны растениям
Микроэлементы необходимые для питания и роста растений
Недостаток получения микроэлементов растениями отрицательно влияет на их здоровье, декоративный вид растений и урожайность плодовых культур, что в свою очередь провоцирует различные заболевания растений и значительно замедляет рост.
Микроэлементы – это химические вещества, необходимые для корректного протекания жизненно важных процессов в живых организмах. Микроэлементы содержатся в растениях в очень малых количествах (как правило, менее 0,001%), но несмотря на минимальное содержание они крайне необходимы для развития и роста растений.
Для корректировки содержания микроэлементов в почве используют некорневые подкормки в течение вегетации, обработку семян до посадки, а также внесение в почву необходимых веществ в виде комплексных удобрений.
Внесение микроэлементов, во время полива и опрыскивания растений, как совместно с удобрениями, так и отдельно от них, позволяет решать ряд проблем роста и развития растений:
Хлороз растений и диагностика состояния растений
Какие же микроэлементы необходимы растениям для полноценного роста красивых и здоровых растений?
Цинк (Zn)
Во всех, без исключения, растениях микроэлемент цинк входит в состав ферментов, которые участвуют в важнейших процессах: дыхании, белковом и углеводном обмене, отвечает за образование важной аминокислоты триптофана, повышает содержание фитогормонов, влияющих на накопление зеленой массы растений. Цинк необходим для нормального развития, он повышает устойчивость к засухе и заморозкам.
При недостатках цинка у растений нарушается развитие и процесс деления клеток – образуются узкие и закрученные в спираль листья, ткань между жилками обесцвечивается.
Медь (Cu)
Медь обеспечивает устойчивость ко всем неблагоприятным факторам развития растений. Медь усиливает интенсивность дыхания, способствует накоплению азота, а также участвует в процессе образования хлорофилла, углеводов и белков.
При недостатке в питании растения меди у них наблюдаются задержки в росте и цветении, развивается хлороз, потеря тургора и увядание. При остром дефиците меди белеют кончики листьев и высыхает верхушка, растения могут полностью потерять возможность размножения.
Железо (Fe)
Во всех растениях железо входит в состав ферментов, активно участвует в синтезе хлорофилла, процессах дыхания, фиксации азота, реакциях обмена веществ. Накапливаясь в растениях, железо с пищей попадает в организм человека и животных.
При дефиците микроэлемента железа у растений развивается хлороз, из-за нарушения образования хлорофилла, а листья теряют зеленую окраску, затем белеют и преждевременно опадают.
Азот (N)
Дефицит азота замедляет рост, ослабляется интенсивность цветения плодовых и ягодных растений, сокращается вегетационный период, уменьшается содержание белка и снижается урожай у плодовых растений.
Бор (В)
Бор играет важнейшую роль в формировании цветков, завязей и полноценных плодов, значительно увеличивает процент завязывания плодов. Бор участвует в делении клеток и синтезе белков и является необходимым компонентом клеточной оболочки.
При недостатке бора наблюдаются дефекты проводящей системы, камбия и других тканей, пожелтение, деформация и отмирание (некроз) листьев, особенно на верхушках побегов, покраснение жилок листьев, опадание завязей и преждевременное опадание листьев.
Марганец (Mn)
Марганец в растении активирует более 35 ферментов, участвует в фотосинтезе и синтезе витаминов С, В, Е, способствует увеличению содержания сахаров и их оттоку из листьев, ускоряет рост растений и созревание семян.
В растениях, при дефиците микроэлемента марганца, снижается синтез важнейших органических веществ, уменьшается содержание хлорофилла и наблюдается точечный хлороз листьев: между жилками появляются мелкие желтые пятна, а сами жилки остаются зелеными, затем пораженные участки отмирают.
Молибден (Мо)
В растении молибден играет большую роль в азотном обмене и синтезе белковых веществ, способствует усвоению азота, растворенного в воде, фиксации азота, активно участвует в синтезе целого ряда веществ. Под влиянием молибдена в растениях увеличивается содержание углеводов, хлорофилла, аскорбиновой кислоты и каротина, белковых веществ и повышается интенсивность фотосинтеза.
В растениях, при дефиците молибдена, накапливается значительное количество нитратов, появляются пятна на средних и старых по возрасту листьях, а их края закручиваются вверх, мелкие жилки теряют зеленую окраску, между жилками листочков образуются ярко-желтые пятна.
Кобальт (Со)
В растениях кобальт отвечает за активную симбиотическую азотфиксацию, увеличивает общее содержание жидкости в растениях, особенно в засушливые периоды. Участвует в образовании витамина В12, в связи с чем корма для животных и растительная пища человека должна содержать кобальт.
Дефицит кобальта провоцирует ухудшение симбиотической азотфиксации клубеньковыми бактериями, что, в конечном счете, приводит к недостаточному обогащению почвы азотистыми соединениями.
Магний (Mg)
Недостаток магния снижает содержание хлорофилла в зеленых частях растений, и способствует развитию хлороза между жилками листа (сами жилки остаются зелеными). При остром дефиците микроэлемента происходит полное отмирание листьев, начиная с краев: при этом они скручиваются и постепенно опадают.
Хлороз растений и диагностика состояния растений
Комплексные подкормки микроэлементами и поддержание баланса основных микроэлементов позволит ускорить рост, сохранить высокие декоративные качества и здоровье домашних растений.
Хелатные микроудобрения – польза на все 100%!
Добавление статьи в новую подборку
Грамотная подкормка культурным растениям нужна абсолютно на всех этапах роста и развития. Но как среди представленного в магазинах разнообразия выбрать самые-самые эффективные и при этом безвредные для садово-огородных культур удобрения? Учимся выбирать подкормки!
Не будем сегодня останавливаться на обязательных комплексных удобрениях с основными питательными элементами растений (азот, калий, фосфор), с их применением опытным дачникам уже давно все более-менее понятно. Поговорим о микроэлементах в жизни садовых, огородных и декоративных культур, чью роль в жизни растений часто преуменьшают, а зря.
Какие микроэлементы нужны растениям, когда и зачем
Микроэлементы – элементы питания растений, столь же необходимые для их нормальной жизнедеятельности, как и основные компоненты. Их отличие от последних состоит лишь в том, что требуются они организму в микроскопических количествах, отсюда и название. Соответственно и удобрения, содержащие микроэлементы, именуются микроудобрениями.
С одной стороны, микроэлементы, действительно, требуются растениям в совершенно малых дозах, с другой – в истощенной почве на вашем участке их может просто не оказаться, а заменить их ничем не удастся.
Выделяют семь важнейших микроэлементов, жизненно необходимых растениям:
Все они принимают самое непосредственное участие в биохимических процессах в растениях – влияют на обмен и транспорт макроэлементов, участвуют в синтезе хлорофилла, активизируют ферменты… Кроме этого, микроэлементы играют важную роль в нормальном росте и развитии растения, его устойчивости к заболеваниям и неблагоприятным факторам окружающей среды, урожайности, в конечном итоге.
Недостаток того или иного элемента вы, при должном внимании, сами легко определите у своих растений. Например:
Причем все эти неприятности могут случиться с растениями на протяжении всего периода роста – начиная с этапа прорастания семян и вплоть до сбора урожая.
Что в этом случае делать? Конечно «кормить» – тем, чего не хватает в данный момент!
Но вопрос с выбором лучших подкормок среди многообразия баночек, бутылочек и упаковок на магазинных полках по-прежнему актуален – что брать для своих растений?
«Продвинутые» садоводы-огородники советуют остановить свой выбор на наиболее современной и эффективной форме удобрений – на хелатах.
Что такое хелатные удобрения и чем они лучше обычных
Они отлично усваиваются растениями, безопасны для окружающей среды и весьма эффективны. Знакомьтесь – хелаты, комплексные минеральные удобрения нового поколения.
Раньше микроэлементы в состав большинства удобрений входили в виде растворимых неорганических солей. И в таком виде усваивались они растениями весьма слабо – не более чем на 20-35%! Соли эти могли вступать в перекрестные реакции в почве с образованием неусвояемых соединений. К тому же некоторые из них даже токсичны, а еще – требуют дополнительной переработки почвенными микроорганизмами. А из-за низкой усвояемости приходится регулярно вносить достаточно большие дозы таких удобрений, неотвратимо засоляя почвы. Это неэффективно и сложно.
Что делать? Выбирать современные удобрения, где микроэлементы содержатся в форме особых активных органических соединений-хелатов, которые растения усваивают гораздо лучше и эффективнее, практически на 100%.
Хелаты не вступают в перекрестные реакции в почве, а также не связываются почвой – отсюда такая высокая эффективность (они «целиком» поглощаются растениями). Кроме того, микроэлементы в хелатной форме предотвращают развитие хлороза и пожелтение листьев.
Комплексы эти биологически активны и близки по своей структуре к природным веществам (например, хлорофилл или витамин В12 по своей природе являются хелатами), поэтому безвредны и эффективны для растения, особенно молодого.
При желании вы можете изготовить хелатные моноудобрения и в домашних условиях, это достаточно трудоемкий, но реальный процесс. Но зачем «изобретать велосипед», если все придумано до нас и можно просто купить в магазине необходимую подкормку.
Выбрать, например, специализированную серию от Буйских удобрений – микроудобрения в хелатной форме. Они эффективны, подходят абсолютно для любых культур и могут применяться как на стадии обработки семян, так и для рассады или взрослых растений в период вегетации. Переборщить с ними довольно сложно – растения в любом случае возьмут столько, сколько нужно, и именно тех веществ, которых не хватает в почве.
Как применять хелатные удобрения? Общие рекомендации сводятся к тому, чтобы вносить хелаты в особенно важные для растений периоды жизни, чтобы действенно помочь им:
Когда применять хелатные удобрения? Это вам подскажут ваши растения, присмотритесь:
Все они выпускаются в виде сухого порошка, а после растворения в воде по инструкции подходят в любое время года для полива и опрыскивания рассады и взрослых овощных, плодово-ягодных, горшечных, цветочно-декоративных культур в качестве профилактики недостатка (хлороза), высокоэффективны при pH 3-10.
Хелатные удобрения безопасны, высокоэффективны и удобны в применении. Они улучшают усвояемость основных питательных элементов и заметно помогают растениям. Если ваши культуры чувствуют себя «не очень» – у вас есть все шансы быстро и действенно помочь им, попробуйте сами!
Выдержка из работы В. И. Малиновский, «ФИЗИОЛОГИЯ РАСТЕНИЙ» с сокращениями и ссылками
4. МИНЕРАЛЬНОЕ ПИТАНИЕ
4.1. Почва как источник питательных веществ
Растения получают углерод и кислород преимущественно из воздуха, а остальные элементы из почвы. Питательные элементы — это химические элементы, которые необходимы растению и не могут быть заменены никакими другими. Питательные вещества — это соединения, в которых имеются эти элементы. Питательные элементы содержатся в почве в 4 формах:
4.2. Содержание минеральных элементов в растениях
Все элементы в зависимости от их количественного содержания в растении принято делить на макроэлементы (содержание более 0,01%) — к ним относятся азот, фосфор, сера, калий, кальций, магний и микроэлементы (содержание менее 0,01%): железо, марганец, медь, цинк, бор, молибден, кобальт, хлор. Ю. Либихом было установлено, что все перечисленные элементы равнозначны и полное исключение любого из них приводит растение к глубокому страданию и гибели, ни один из перечисленных элементов не может быть заменен другим, даже близким по химическим свойствам.
Макроэлементы при концентрации 200-300 мг/л в питательном растворе еще не оказывают вредного действия на растение. Большинство микроэлементов при концентрации 0,1-0,5 мг/л угнетают рост растений.
Для нормальной жизнедеятельности растений должно быть определенное соотношение различных ионов в окружающей среде. Чистые растворы одного какого-либо катиона оказываются ядовитыми. Так, при помещении проростков пшеницы на чистые растворы KCL или CaCL2 на корнях сначала появлялись вздутия, а затем корни отмирали. Смешанные растворы этих солей не обладали ядовитым действием. Смягчающее влияние одного катиона на действие другого катиона называют антагонизмом ионов. Антагонизм ионов проявляется как между разными ионами одной валентности, например, между ионами натрия и калия, так и между ионами разной валентности, например, калия и кальция. Одной из причин антагонизма ионов является их влияние на гидратацию белков цитоплазмы.
4.3. Физиолого-биохимическая роль основных элементов питания
4.3.1. Углерод
Все органические соединения построены, в основном, из углерода. Растение получает углерод из воздуха, поглощая углекислый газ, но 2 – 5% углерода усваивается корнями в виде углекислоты из почвы. Растения поглощают углекислый газ и в процессе фотосинтеза синтезируют органическое вещество. В ходе диссимиляции, то есть расщепления органических веществ с использованием заключенной в них энергии, растения потребляют кислород и выделяют углекислый газ. Таким образом, растения участвуют в круговороте углерода на нашей планете. Основная масса (примерно 57%) углекислоты атмосферы имеет растительное происхождение. Почва в результате жизнедеятельности почвенных микроорганизмов поставляет около 58 млрд. т углекислоты в год, то есть 38%. Промышленная деятельность человечества (сжигание угля, нефти и другие) занимает 3% в балансе выделяемой углекислоты. Остальные источники — дыхание людей и животных, вулканы, фумаролы и другие — вместе выделяют менее 2% углекислоты.
Мировой океан принимает участие в регуляции содержания углекислого газа в атмосфере. Морская и пресная вода, кроме карбонатов и оснований, содержит также растворенную углекислоту и бикарбонаты. При изменении давления СО2 в воздухе часть его для достижения динамического равновесия между свободным газом атмосферы и растворенным в воде переходит в воду или обратно в атмосферу. Однако постоянство парциального давления углекислого газа в атмосфере достигается, главным образом, соответствием между выделением углекислоты и потреблением ее растениями. Ежегодно в процессе фотосинтеза наземные и морские растения поглощают около 15,6 х 1010 т углекислоты, то есть 1/16 всего мирового запаса
4.3.2. Азот
Азот входит в состав белков, нуклеиновых кислот, пигментов, коферментов, фитогормонов и витаминов. При недостатке азота тормозится рост растений, ослабляется образование боковых побегов и кущение у злаков, наблюдается мелколистность, уменьшается ветвление корней. Симптомом азотного дефицита является хлороз листьев — бледно-зеленая окраска листьев, вызванная ослаблением синтеза пигмента хлорофилла. Длительное азотное голодание ведет к гидролизу белков и разрушению хлорофилла в нижних более старых листьях и оттоку растворимых соединений азота к молодым листьям, точкам роста и генеративным органам. Вследствие разрушения хлорофилла окраска нижних листьев в зависимости от вида растения приобретает желтые, оранжевые или красные тона, а при сильно выраженном азотном дефиците возможно высыхание и отмирание тканей. ( …
4.3.3. Фосфор
Растения поглощают из почвы свободную ортофосфорную кислоту и ее двух- и однозамещенные соли, растворимые в воде, а также и некоторые органические соединения фосфора, такие как фосфаты сахаров и фитин.
Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор входит в состав нуклеиновых кислот, нуклеотидов, фосфолипидов и витаминов. Многие фосфорсодержащие витамины и их прозводные являются коферментами. ( …)
Основной запасной формой фосфора у растений является фитин — кальций-магниевая соль инозитфосфорной кислоты. Содержание фитина в семенах достигает 2% от сухой массы, что составляет 50% от общего содержания фосфора.
При дефиците фосфора снижается скорость поглощения кислорода, снижается активность дыхательных ферментов, локализованных в митохондриях, и активируются ферменты (оксидаза гликолевой кислоты, аскорбатоксидаза) немитохондриальных систем окисления, происходит распад фосфорорганических соединений, тормозится синтез белков и свободных нуклеотидов. Наиболее чувствительны к недостатку фосфора молодые растения. Симптомом фосфорного голодания является синевато-зеленая окраска, в первую очередь, старых листьев нередко с пурпурным из-за накопления антоцианов или бронзовым оттенком (свидетельство задержки синтеза белка и накопления сахаров). Листья становятся мелкими и более узкими. Приостанавливается рост растений, задерживается созревание урожая
4.3.4. Сера
4.3.5. Калий
Калий поглощается растениями в виде катиона. Его содержание в растениях составляет, в среднем, 0,9%. Концентрация калия высока в огурцах, томатах и капусте, но особенно много его в подсолнечнике. В растениях калий больше сосредоточен в молодых растущих тканях. Около 80% калия содержится в вакуолях и 1% калия прочно связан с белками митохондрий и хлоропластов. Калий стабилизирует структуру этих органелл.
Калий участвует в создании разности электрических потенциалов между клетками. Он нейтрализует отрицательные заряды неорганических и органических анионов. Калий в значительной мере определяет коллоидные свойства цитоплазмы, так как способствует поддержанию состояния гидратации коллоидов цитоплазмы, повышая ее водоудерживающую способность. Тем самым калий увеличивает устойчивость растений к засухе и морозам. Калий необходим для работы устьичного аппарата. Известно более 60 ферментов, активируемых калием. ( …)
При недостатке калия он может заменяться натрием, но некоторые активируемые калием ферменты ингибируются натрием. При недостатке калия листья желтеют снизу вверх — от старых к молодым. Их края и верхушки приобретают бурую окраску, иногда с красными пятнами, затем происходит отмирание этих участков. Снижается функционирование камбия, нарушается развитие сосудистых тканей, уменьшается толщина кутикулы и стенок эпидермальных клеток, тормозятся процессы деления и растяжения клеток, что приводит к появлению розеточных форм растений. Недостаток калия вызывает остановку развития и гибель верхушечных почек, в результате чего активируется рост боковых побегов и растение принимает форму куста
4.3.6. Кальций
В почве содержится много кальция и кальциевое голодание встречается редко, например, при сильной кислотности или засоленности почв и на торфяниках. Общее содержание кальция у разных видов растений составляет 5-30 мг на 1 г сухой массы. Много кальция содержат бобовые, гречиха, подсолнечник, картофель, капуста, гораздо меньше — зерновые, лен, сахарная свекла. В тканях двудольных растений кальция больше, чем у однодольных.
Кальций накапливается в старых органах и тканях. Это связано с тем, что реутилизация кальция затруднена, так как он из цитоплазмы переходит в вакуоль и откладывается в виде нерастворимых солей щавелевой, лимонной и других кислот. ( …)
Кальций используется в растительных клетках как вторичный посредник для контролирования многих процессов (закрытие устьиц, тропизм, рост пыльцевых трубок, акклиматизация к холоду, экспрессия генов, фотоморфогенез). ( …)
При недостатке кальция у делящихся клеток не образуются клеточные стенки и образуются многоядерные меристематические клетки. Недостаток кальция вызывает прекращение образования боковых корней и корневых волосков, приводит к набуханию пектиновых веществ, что вызывает ослизнение клеточных стенок и разрушение клеток. Также нарушается структура плазмалеммы и мембран клеточных органелл. Симптомами дефицита кальция является побеление с последующим почернением кончиков и краев листьев. Листовые пластинки искривляются и скручиваются. На плодах, в запасающих и сосудистых тканях появляются некротические участки.
4.3.7. Магний
Недостаток в магнии растения испытывают на песчаных и подзолистых почвах. Много магния в сероземах, черноземы занимают промежуточное положение. Водорастворимого и обменного магния в почве 3-10%. Магний поглощается растением в виде иона Mg2+. При снижении рН почвенного раствора магний поступает в растения в меньших количествах. Кальций, калий, аммоний и марганец действуют как конкуренты в процессе поглощения магния растениями.
У высших растений среднее содержание магния составляет 0,02-3%. Особенно много его в растениях короткого дня — кукурузе, просе, сорго, а также в картофеле, свекле и бобовых. Много магния в молодых клетках, а также в генеративных органах и запасающих тканях.
Около 10-12% магния находится в составе хлорофилла. Магний необходим для синтеза протопорфирина IX — непосредственного предшественника хлорофиллов. ( …)
Недостаток магния приводит к уменьшению содержания фосфора в растении, даже если фосфаты в достаточных количествах имеются в питательном субстрате. При недостатке магния тормозится превращение моносахаров в крахмал, слабо функционирует механизм синтеза белков, нарушается формирование пластид: матрикс хлоропластов просветляется и граны слипаются, ламеллы стромы разрываются и не образуют единой структуры. При магниевом голодании между зелеными жилками появляются пятна и полосы светло-зеленого, а затем желтого цвета. Края листовых пластинок приобретают желтый, оранжевый, красный или темно-красный цвет и такая как бы мраморная окраска наряду с хлорозом служит характерным симптомом нехватки магния. Признаки магниевой недостаточности сначала появляются на старых листьях, а затем распространяются на молодые листья
4.3.8. Кремний
4.3.9. Микроэлементы
Железо.
Среднее содержание железа в растениях составляет 20-80 мг на 1 кг сухой массы. Ионы Fe3+ почвенного раствора восстанавливаются редокс-системами плазмалеммы клеток ризодермы до Fe2+ и в такой форме поступают в корень.
Железо необходимо для функционирования основных редокс-систем фотосинтеза и дыхания, синтеза хлорофилла, восстановления нитратов и фиксации молекулярного азота клубеньковыми бактериями, входя в состав нитратредуктазы и нитрогеназы. Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выражается в пожелтении (хлорозе ) листьев и быстром их опадении.
Марганец
Марганец в клетки поступает в форме ионов Mn2+. Среднее его содержание составляет 1 мг на 1 кг сухой массы. Марганец накапливается в листьях. Он необходим для фоторазложения воды с выделением кислорода и восстановления углекислого газа при фотосинтезе. Марганец способствует увеличению содержания сахаров и их оттоку из листьев. ( …)
Характерный симптом марганцевого голодания — точечный хлороз листьев, когда между жилками появляются желтые пятна, а затем клетки в этих участках отмирают.
Молибден.
При недостатке молибдена в тканях накапливается большое количество нитратов, не развиваются клубеньки на корнях бобовых, тормозится рост растений, наблюдаются деформации листовых пластинок. При высоких дозах молибден токсичен. При недостатке молибдена молодые листья по краям приобретают серую, а затем коричневую окраску, теряют тургор, а затем ткани листа отмирают и остаются только жилки в виде хлыстиков.
Кобальт.
Среднее содержание кобальта в растениях 0,02 мг на 1 кг сухой массы. Кобальт необходим бобовым растениям для обеспечения размножения клубеньковых бактерий. В растениях кобальт встречается в ионной форме и в витамине В12. Растения не вырабатывают этот витамин. Он синтезируется бактероидами клубеньков бобовых растений и участвует в синтезе метионина в бактероидах. При старении клубеньков и прекращении фиксации азота витамин выходит в цитоплазму клеток клубеньков. Наряду с магнием и марганцем кобальт активирует фермент гликолиза фосфоглюкомутазу и фермент аргиназу, гидролизующий аргинин.
Внешние признаки недостатка кобальта сходны с признаками азотного голодания.
Медь поступает в клетки в форме иона Сu2+. Среднее содержание меди в растениях 0,2 мг на кг сухой массы. ( …) Влияя на содержание в растениях ингибиторов роста фенольной природы медь повышает устойчивость растений к полеганию. Она также повышает засухо-, морозо- и жароустойчивость. Недостаток меди вызывает задержку роста и цветения, хлороз, потерю тургора и завядание растений. У злаков при недостатке меди не развивается колос, у плодовых появляется суховершинность. При дефиците меди белеют и отмирают кончики листьев, листья и плоды плодовых деревьев покрываются бурыми пятнами.
Содержание цинка в надземных частях бобовых и злаковых растений составляет 15-60 мг на кг сухой массы. Повышенная концентрация отмечается в листьях, репродуктивных органах и конусах нарастания, наибольшая — в семенах.
( …)Подкормка цинком способствует увеличению содержания ауксинов в тканях и активирует их рост.
При дефиците цинка у растений нарушается фосфорный обмен: фосфор накапливается в корнях, задерживается его транспорт в надземные органы, замедляется превращение фосфора в органические формы. При недостатке цинка в растениях уменьшается содержание сахарозы и крахмала, увеличивается количество органических кислот и небелковых соединений азота — амидов и аминокислот. Кроме того, в 2-3 раза подавляется скорость деления клеток, что приводит к морфологическим изменениям листьев, нарушению растяжения клеток и дифференциации тканей. Наиболее характерный признак цинкового голодания — это задержка роста междоузлий и листьев, появление хлороза и развитие розеточности.
Его среднее содержание составляет 0,1 мг на кг сухой массы. В боре наиболее нуждаются двудольные растения. Много бора в цветках. В клетках большая часть бора сосредоточена в клеточных стенках. Бор усиливает рост пыльцевых трубок, прорастание пыльцы, увеличивает количество цветков и плодов. Без него нарушается созревание семян. Бор снижает активность некоторых дыхательных ферментов, оказывает влияние на углеводный, белковый и нуклеиновый обмен. При недостатке бора нарушаются синтез, превращения и транспорт углеводов, формирование репродуктивных органов, оплодотворение и плодоношение. Он не может реутилизироваться и поэтому при борном голодании прежде всего отмирают конусы нарастания, останавливается рост побегов и корней, листовые пластинки утолщаются, скручиваются, становятся ломкими, цветки не образуются
4.4. Применение удобрений
В естественных биоценозах поглощенные из почвы соединения частично возвращаются с опавшими листьями, ветками, хвоей. С убранным урожаем сельскохозяйственных растений поглощенные вещества из почвы устраняются. Величина выноса минеральных элементов зависит от вида растения, урожайности и почвенно-климатических условий. Овощные культуры, картофель, многолетние травы выносят больше элементов питания, чем зерновые.
Для предотвращения истощения почвы и получения высоких урожаев сельскохозяйственных культур необходимо внесение удобрений. Сопоставляя количество элементов в почве и растении с величиной урожая Ю. Либих сформулировал закон минимума или закон ограничивающих факторов. Согласно этому закону величина урожая зависит от количества того элемента, который находится в почве в относительном минимуме. Увеличение содержания этого элемента в почве за счет внесения удобрений будет приводить к возрастанию урожая до тех пор, пока в минимуме не окажется другой элемент. Позже было установлено наличие у растений критических периодов по отношению к тому или иному минеральному элементу, то есть периодах более высокой чувствительности растений к недостатку этого элемента на определенных этапах онтогенеза. Это позволяет регулировать соотношение питательных веществ в зависимости от фазы развития и условий среды. Так, известно, что в осенний период для озимых культур не рекомендуется вносить азотные удобрения, так как они усиливают ростовые процессы, снижая устойчивость растений. В осенний период надо проводить подкормки фосфором и калием, а весной азотом.
Система удобрений — это программа применения удобрений в севообороте с учетом растений-предшественников, плодородия почвы, климатических условий, биологических особенностей растений, состава и свойств удобрений. Система удобрений создается с учетом круговорота веществ и их баланса в земледелии. Баланс питательных веществ учитывает поступление их в почву с удобрениями, суммарный расход на формирование урожаев и непродуктивные потери в почве. Необходимое условие функционирования системы удобрений — это предотвращение загрязнения окружающей среды вносимыми в почву химическими соединениями.
До посева вносят ⅔ общей нормы удобрений. Они должны обеспечить растение на весь период развития элементами питания и повысить плодородие почвы. Припосевное удобрение в виде хорошо растворимых соединений вносят малыми дозами одновременно с посевом или посадкой растений для обеспечения минерального питания молодых растений. Послепосевные внекорневые подкормки, основанные на способности листьев поглощать минеральные соли в растворе, проводятся для усиления питания растений в наиболее важные периоды их развития.