Голландский шаг в авиации что это

Демпфер рыскания (Yaw Damper)

Для улучшения характеристик бокового движения самолета и недопущения незатухающих колебаний типа «голландский шаг» в системе управления рулем направления установлен демпфер рыскания.

Голландский шаг в авиации что это. Смотреть фото Голландский шаг в авиации что это. Смотреть картинку Голландский шаг в авиации что это. Картинка про Голландский шаг в авиации что это. Фото Голландский шаг в авиации что это

Демпфер рыскания искусственно увеличивает путевую устойчивость и таким образом предотвращает колебания.

При этом перемещения исполнительного привода демпфера на педали не передаются, и летчик не может тактильно ощущать работу демпфера. Для контроля за его работой выведен индикатор, показывающий отклонения исполнительного привода демпфера.

Удобный контроль на рулении: планка первоначально должна отклониться в сторону противоположную развороту. Затем планка может возвращаться в нейтраль или даже отклоняться в сторону разворота. Это объясняется сложным законом отклонения руля направления, когда руль реагирует на быстроизменяющуюся составляющую угловой скорости разворота и не реагирует на постоянную её составляющую.

При нормальной работе демпфера в полёте отклонения планки индикатора практически незаметны.

На самолетах новой комплектации с установленным интегрированным узлом связи (IFSAU) между САУ и самолетом (см. Система автоматического управления), при выпущенных закрылках сигнал демпфера усиливается на 29% для противодействия усиливающейся поперечной устойчивости. Кроме того, на 50% гасятся сигналы с частотой 8 герц для уменьшения вибраций и улучшения комфорта пассажиров.

Координированное скольжение

Координированное скольжение – это контрольный маневр, выполняемый при летных испытаниях самолета. Он позволяет выявить особенности боковой устойчивости и управляемости самолета, в частности взаимную эффективность поперечного и путевого управления. При его выполнении выдерживают прямолинейный полет на постоянной высоте и скорости с постепенным ступенчатым отклонением руля направления. Чтобы возникающее при этом скольжение не уводило самолет с прямолинейной траектории, создают крен в противоположную сторону. Таким образом, боковая составляющая силы тяжести будет компенсировать боковую силу от скольжения. В данном маневре путевой канал как бы борется с поперечным. Если нет прочностных ограничений, то отклонения рулей выполняются до полного расхода. Как правило, первыми становятся на упор педали, а поперечное управление ещё имеет запас. Но бывает и наоборот.

В отчете по расследованию катастрофы Боинга 737-200 3 марта 1991 года в районе Colorado Springs NTSB опубликовало результаты выполненных координированных скольжений на скорости 150-160 узлов в различной конфигурации закрылков от 40 до 10 градусов.

Рассматривался случай полного отклонения (непроизвольного увода) руля направления вправо на 25 градусов.

Угол отклонения руля направлен.Угол отклонения закрылковУгол скольженияУгол отклонения колеса штурвалаУгол крена
25 прав14 прав35 лев18 лев
25 прав15 прав44 лев17 лев
25 прав15 прав68 лев16 лев
23 прав17 прав107 лев23 лев
21 прав16 прав107 лев19 лев
25 прав*13 прав107 лев40 прав

Таким образом, из таблицы видно, что увод руля направления в крайнее положение не опасен при закрылках, выпущенных в положение от 40 до 25 градусов. Кренящий момент от возникшего скольжения можно будет парировать отклонением штурвала на угол, соответственно от 35 до 68 градусов. Объясняется это резко возросшей эффективностью отклоняемых в полете интерцепторов (flight spoilers), которые срывают поток с закрылка на той половине крыла, которая должна опускаться.

Нижняя строчка таблицы не относится к координированному скольжению. В данном случае балансировка была достигнута при выполнении виража вправо с креном 40 градусов. Штурвал при этом был отклонен влево на полный угол, а уменьшение угла скольжения с 16 до 13 градусов достигается за счет появления демпфирующего путевого момента М Y wy от угловой скорости разворота.

Также в этом отчете есть информация о том, что поведенные исследования показали, что при уменьшении скорости до определенной величины, эффективности поперечного управления, с закрылками, выпущенными на 1 градус, становится недостаточно для парирования увода руля направления в крайнее положение. Данная скорость названа «скорость критической точки»(crossover airspeed).

Система автоматического управления

Система автоматического управления самолетом (AFCS) состоит из трех независимых систем: цифровой системы управления полетом (DFCS), демпфера рысканья (см. Боковая устойчивость и управляемость) и автомата тяги. Эти системы обеспечивают автоматическую стабилизацию самолета по тангажу, крену и скольжению и управление самолетом по сигналам радионавигационных средств, бортового навигационного компьютера (FMC), компьютера высотно-скоростных параметров (ADC) и стабилизацию курса.

Связь между цифровой системой управления и самолетом осуществляет в зависимости от комплектации самолета узел связи (AFC) или интегрированный узел связи (IFSAU). В зависимости от этого несколько меняется работа демпфера рысканья.

Автоматическое управление самолетом осуществляется посредством руля высоты и элеронов. На самолётах модификации «NG» может быть установлено автоматическое управление рулём направления.

Также происходит автоматическое снятие усилий со штурвала в продольном канале (с возвращением штурвальной колонки в нейтральное положение) путем перестановки стабилизатора. Автоматического снятия усилий в поперечном канале не происходит, поэтому запрещено пользоваться механизмом триммерного эффекта элеронов при включенном автопилоте. В этом случае рулевая машина автопилота будет пересиливать пружину загрузочного механизма (aileron feel and centering unit) и, при отключении автопилота, самолёт начнёт неожиданно для лётчика крениться.

Похожий случай произошел 6 сентября 2011 года в авиакомпании ANA, правда там лётчик непроизвольным отклонением механизма триммерного эффекта руля направления разбалансировал путевой канал, что привело к отключению автопилота и резкому кренению самолёта.

В полёте, при включенном автопилоте, штурвальная колонка и рулевое колесо должны стоять нейтрально. Это говорит об отсутствии усилий в проводке руля высоты и элеронов. Отклонение штурвальной колонки от нейтрали является признаком отказа управления стабилизатором или его ухода (runaway).

Отклонение рулевого колеса свидетельствует о поперечной (путевой) несимметрии самолета, неравномерной выработке топлива или несимметричной тяге двигателей. Техника триммирования бокового канала описана в разделе «боковая устойчивость и управляемость».

В случае полета с несимметричной тягой двигателей пилот должен отклонением педалей самостоятельно управлять путевым каналом. В противном случае точность выдерживания заданных параметров полета не гарантирована.

Отключение автопилота (DFCS) индицируется миганием красных ламп-кнопок «A/P P/RST» и звуком сирены, а отключение автомата тяги – только красными лампами-кнопками «A/T P/RST». Согласно отчета AAIB (Air Accidents Investigation Branch) о расследовании инцидента с Боингом 737-300 авиакомпании Thomsonfly, произошедшего в Bournemouth (Великобритания) 23 сентября 2007 года, отсутствие звуковой сигнализации отключения автомата тяги явилось причиной, способствующей инциденту. Во время захода на посадку при работе двигателей на режиме «Малый газ» автомат тяги отключился, что осталось незамеченным экипажем. На глиссаде снижения самолет потерял скорость до 82 узлов (на 20 км/час ниже VREF) и вышел на режим сваливания.

Кроме управления самолётом цифровая система управления полетом (DFCS) выдаёт на индикацию лётчикам отклонения директорных планок по крену и тангажу. Эти отклонения эквивалентны командам на рулевые машины автопилота. Поэтому, когда автопилот выключен, а лётчик пилотирует самолёт по директорным планкам, то он выполняет работу рулевой машины автопилота. Пилотирование по директорам значительно повышает точность выдерживания заданных режимов, но отучает лётчика от сканирования и анализа показаний приборов, то есть способствует деградации лётных навыков. Этому способствует политика авиакомпаний, которые во имя комфорта пассажиров запрещают своим пилотам летать с выключенными директорами даже в простых метеоусловиях. Проблема потери лётным составом навыков управления самолётом при выключенных средствах автоматизации неоднократно поднималась на международных конференциях по безопасности полётов, но воз и ныне там.

Полет самолета при несимметричной тяге

Рассмотрим поведение самолета сразу после отказа одного из двигателей и потребное управление (балансировку) для обеспечения прямолинейного полета с одним остановленным двигателем.

Пусть отказал левый двигатель. На самолет начнет действовать момент рыскания МУ ДВ, разворачивающий его влево. Возникнет скольжение на правое крыло, следовательно, и момент крена Мх b в сторону крыла с остановленным двигателем. На рисунке показано примерное изменение углов скольжения и крена при остановке левого двигателя.

Голландский шаг в авиации что это. Смотреть фото Голландский шаг в авиации что это. Смотреть картинку Голландский шаг в авиации что это. Картинка про Голландский шаг в авиации что это. Фото Голландский шаг в авиации что это

Поскольку поперечная устойчивость велика (особенно с выпущенными закрылками), то накренение будет происходить энергично, так что требуется немедленное вмешательство пилота. Для парирования кренящего момента, при работе двигателя на взлетном режиме, полного отклонения штурвала по крену недостаточно. Необходимо убрать скольжение рулем направления.

Рассмотрим, каковы условия балансировки в длительном полете с одним неработающим двигателем. Проанализируем два специфических случая балансировки в прямолинейном полете с остановленным двигателем: 1) без крена, 2) без скольжения, а также рекомендацию фирмы Боинг.

Голландский шаг в авиации что это. Смотреть фото Голландский шаг в авиации что это. Смотреть картинку Голландский шаг в авиации что это. Картинка про Голландский шаг в авиации что это. Фото Голландский шаг в авиации что это

Для балансировки без крена требуется создать скольжение на левое крыло. Тогда к моменту от несимметричной тяги Му двиг прибавится момент от скольжения Му b. Их уравновешивание требует большого отклонения руля направления. Боковые силы от руля направления Z рн и от скольжения Z b будут действовать в противоположные стороны и при некотором угле скольжения уравновесятся. Поперечный момент Мх b будет компенсироваться моментами от руля направления Мх рн и элеронов Мх элер.

Казалось бы, для пилота прямолинейный полет без крена является наиболее приемлемым, но из-за большого потребного угла отклонения руля направления возрастает сопротивление самолета. Это ухудшает возможности самолета, особенно при отказе двигателя на взлете с большой массой и при высоких температурах.

Заметим, что хотя полет происходит здесь со скольжением, но шарик указателя скольжения расположится строго по центру. Дело в том, что аэродинамические силы в этом случае располагаются в плоскости симметрии самолета. Вообще говоря, данный прибор не является указателем скольжения, а является указателем боковой перегрузки. Боковая перегрузка возникает от нескомпенсированной аэродинамической силы Z, которая уравновешивается боковой составляющей силы тяжести G*sing при полете с креном или центробежной силой при развороте самолета.

2. Полет без скольжения.

Голландский шаг в авиации что это. Смотреть фото Голландский шаг в авиации что это. Смотреть картинку Голландский шаг в авиации что это. Картинка про Голландский шаг в авиации что это. Фото Голландский шаг в авиации что это

Разворачивающий момент от двигателя Му двиг балансируется моментом от руля направления Му рн. Боковая сила Z рн уравновешивается боковой составляющей силы тяжести G*sing, при создании крена на правое крыло. Поперечный момент от руля направления Мх рн уравновешивается моментом от элеронов Мх элер. Заметим, отклонение элеронов в противоположную сторону, по сравнению с балансировкой без крена. Шарик в данном случае будет отклонен в сторону опущенного крыла, хотя скольжение будет отсутствовать.

Боинг дает другой критерий управления. Рассмотрим балансировочную диаграмму при отказе левого двигателя.

Голландский шаг в авиации что это. Смотреть фото Голландский шаг в авиации что это. Смотреть картинку Голландский шаг в авиации что это. Картинка про Голландский шаг в авиации что это. Фото Голландский шаг в авиации что это

На ней цифрами 1 и 2 показаны рассмотренные случаи балансировки без крена и без скольжения. Вместе с тем существует бесконечное множество других балансировочных положений. Боинг рекомендует пилотам балансировать самолет с нулевым отклонением элеронов (level the control wheel). Пишется, что при этом наблюдается небольшой крен на работающий двигатель и шарик немного отклонен в ту же сторону. Как видно из балансировочной диаграммы, это положение является чем-то средним между двумя рассмотренными случаями балансировки. Его удобно выдерживать, поскольку для контроля «горизонтальности» штурвала необязательно даже смотреть в кабину и можно контролировать правильность положения руля направления тактильными ощущениями руки. Какая половинка штурвала опускается, значит в такую же сторону надо отклонить педали для балансировки. Точно такая же техника пилотирования при включенном автопилоте, поскольку педали от автопилота не управляются.

Отказобезопасность

Отказобезопасностью называется анализ влияния неисправностей на поведение самолета и возможность безопасного завершения полета.

При расследовании катастрофы 3 марта 1991 года NTSB оценил требуемые отклонения штурвала по крену для парирования следующих неисправностей системы управления:

1. Секция выдвижного предкрылка или предкрылок Крюгера не выпустились. В условиях турбулентности данный отказ, скорее всего, останется незамеченным.

3. «Всплывание» интерцептора-элерона.

(Опущенный интерцептор удерживается в полете гидросистемой. Если система удержания интерцептора отказывает, то он, за счет разрежения над крылом, может приподняться над поверхностью крыла. Это называется «всплыванием».)

Парирование такого отказа требует отклонения штурвала на 25 градусов.

4. Заедание золотника рулевого привода руля направления, приведшее к отклонению руля на 10,5 градусов. Требует отклонения штурвала на 40 градусов.

5. Парирование асимметричной тяги двигателей с уводом руля направления на 8 градусов требует 30 градусов отклонения штурвала.

Общий вывод был сделан, что данные отказы не могут являться причиной потери управляемости самолета.

Недостатки самолета

С точки зрения вопросов, касающихся аэродинамики самолет имеет следующие недостатки:

1. Несмотря на то, что самолет оборудован флюгарками, информация о текущем угле атаки пилотам не выдается (за исключением некоторых комплектаций самолетов серий 600 и далее). Подача такой информации значительно бы помогла в случаях ненадежной работы компьютера высотно-скоростных параметров, ошибочного ввода информации о весе самолета в навигационный компьютер (FMC), выводе самолета из сложного положения, заходе на посадку с различными отказами механизации и т. п.

2. В законе управления двигателя отсутствует прямое ограничение режима двигателя при достижении максимально допустимой температуры газов за турбиной. Поэтому в процессе роста скорости на взлёте температура газов за турбиной непрерывно увеличивается и, при взлетах в жаркую погоду с большими взлетными весами, может превысить максимально допустимое значение. Это накладывает дополнительную нагрузку на экипаж по дополнительному контролю и ручной корректировке режима двигателей на разбеге и в процессе первоначального набора высоты. Что не способствует безопасности полета.

3. Самолет имеет чрезмерную поперечную устойчивость, особенно при выпущенных закрылках. Это усложняет его пилотирование и причиняет неудобства пассажирам на взлёте и посадке в условиях порывистого бокового ветра и при полете в неспокойной атмосфере.

В качестве примера по данному пункту подходит инцидент с Боингом 737-500, авиакомпании Международные авиалинии Украины 13 февраля 2008 года.

Выполняя посадку в Хельсинки при сильном порывистом боковом ветре, командир экипажа чрезмерно энергично парируя крен, возникший от порыва ветра, допустил касание законцовкой крыла о ВПП.

На самолётах модификации NG с winglet данный недостаток ещё более усилился.

По этой же причине самолет резко реагирует креном на возникающее скольжение при отказе двигателя на взлете. При этом полного отклонения штурвала по крену не достаточно для парирования кренящего момента и необходимо без задержки отклонить руль направления для парирования возникающего скольжения. В условиях видимости естественного горизонта эта задача решается, как правило, без проблем. Но в облаках или при ограниченной видимости решение этой задачи требует специальной тренировки и достаточно непросто для пилотов привыкших пилотировать по советской системе индикации – вид с земли на самолет.

4. Согласно отчета AAIB (Air Accidents Investigation Branch) о расследовании инцидента с Боингом 737-300 авиакомпании Thomsonfly, произошедшего в Bournemouth (Великобритания) 23 сентября 2007 года, полного отклонения руля высоты не хватило для парирования кабрирующего момента от двигателей. Выводя самолет из режима сваливания, экипаж вывел двигатели на режим, превышающий полную взлетную мощность. При этом тангаж самолета увеличился до 44 градусов, несмотря на то, что командир полностью отклонил штурвальную колонку от себя. В данном случае необходима помощь стабилизатора.

5. На самолётах модификации NG крейсерское число М полёта увеличилось и вплотную приблизилось к MMO. Однако повышенная инертность самолёта (за счёт большей массы) и алгоритм работы автомата тяги таковы, что возникает реальная угроза непреднамеренного превышения MMO в крейсерском полёте в неспокойной атмосфере при усилении встречной составляющей скорости ветра.

6. Сервокомпенсатор руля высоты (elevator tab), предназначенный для уменьшения усилий на штурвале при прямом (безбустерном) управлении самолётом, может провоцировать автоколебания проводки управления. Данные случаи отмечались 1 марта 2010 года http://aviacom.ucoz.ru/publ/boeing_737/nedavnie_incidenty_s_boingom_737/1_marta_2010_goda_brjussel/8-1-0-17

и 2 апреля 2010 года

Также вибрация сервокомпенсатора рассматривается, как одна из возможных причин катастрофы Боинга 737-800 в Бейруте 25 января 2010 года

Источник

Динамическое взаимодействие путевого и поперечного движения.

В предыдущем рассмотрении реакция самолёта на скольжение по крену и рысканию рассматривалась изолировано, для детального анализа.

В реальности, оба эти момента возникают одновременно: кренящий момент от поперечной статической устойчивости и момент рыскания от путевой статической устойчивости.

Спиральная неустойчивость.

Самолёт обладает спиральной неустойчивостью, если его путевая устойчивость очень велика, по сравнению с поперечной устойчивостью.

Спиральная неустойчивость проявляется плавно. Самолёт, после воздействия возмущения, начинает плавно увеличивать крен, который постепенно может перейти в крутую нисходящую спираль.

Причина возникновения спиральной неустойчивости заключается в том, что самолёт быстро устраняет возникшее скольжение, в то время как слабая поперечная устойчивость не успевает убрать крен. При этом моменту поперечной устойчивости противодействует спиральный момент крена, который возникает при вращении самолёта относительно нормальной оси. Допустим, возникло скольжение справа. Путевая устойчивость начинает разворачивать нос самолёта вправо. При этом левое крыло движется по большему радиусу, его подъёмная сила увеличивается и стремится накренить самолет вправо – в противовес моменту поперечной устойчивости.

Темп развития крена при спиральной неустойчивости обычно слабый, что не создаёт пилоту трудностей в управлении самолётом.

«Голландский шаг».

Колебания типа «голландский шаг» возникают, когда поперечная устойчивость самолёта велика, по сравнению с путевой устойчивостью.

Это самопроизвольно возникающие нежелательные колебания, вызванные взаимодействием путевого и поперечного канала.

Когда у самолёта возникает скольжение, то момент поперечной устойчивости энергично создаёт крен от скольжения. На поднимающемся полукрыле подъёмная сила и индуктивное сопротивление больше, чем на опускающемся. Это создаёт момент рыскания на уменьшение угла скольжения, но за счёт инерции самолёт проскакивает нулевое значение и возникает скольжение уже с другой стороны. После чего процесс повторяется в другую сторону.

Для устранения «голландского шага» на самолёты устанавливают демпферы рыскания, которые искусственно повышают путевую устойчивость, отклоняя руль направления для противодействия возникающей угловой скорости рыскания.

Если демпфер рыскания отказал в полёте, то возникающие колебания рекомендуется устранять, используя поперечное управление самолёта. Потому что при использовании руля направления, запаздывание в реакции самолёта таково, что возможна раскачка самолёта лётчиком (PIO). В этом случае «голландский шаг» может быстро привести к расходящимся колебаниям и потерей контроля над самолётом.

«Голландский шаг» нежелательный, а спиральная неустойчивость допустима, если скорость нарастания крена мала. Поэтому степень поперечной устойчивости не должна быть большой.

Если степень путевой устойчивости самолёта достаточна для предотвращения «голландского шага», то она автоматически достаточна для недопущения путевой апериодической неустойчивости (непрерывного нарастания угла скольжения). Поскольку наилучшие пилотажные свойства демонстрируют самолёты, обладающие высокой степенью путевой устойчивости и минимально необходимой степенью поперечной устойчивости, то большинство самолётов имеют небольшую спиральную неустойчивость. Как уже говорилось, слабая спиральная неустойчивость вызывает мало беспокойства у пилотов и гораздо предпочтительнее, чем «голландский шаг».

Стреловидное крыло значительно влияет на поперечную устойчивость. Поскольку степень этого влияния зависит от Су, то динамические характеристики самолёта могут меняться в зависимости от скорости полёта. На больших скоростях (малых Су) поперечная устойчивость мала и самолет имеет спиральную неустойчивость. На малых скоростях поперечная устойчивость возрастает и усиливается тенденция к колебаниям типа «голландский шаг».

Раскачка самолёта пилотом (PIO).

Определённые нежелательные колебания самолёта могут возникнуть из-за непреднамеренных движений органами управления самолётом. Колебания могут возникнуть относительно любой оси, но наиболее опасными являются короткопериодические продольные колебания. За счёт запаздывания обратной связи, система пилот/система управления/самолёт может возбудить колебания, приводящие к разрушающим нагрузкам на конструкцию и потере управления.

Голландский шаг в авиации что это. Смотреть фото Голландский шаг в авиации что это. Смотреть картинку Голландский шаг в авиации что это. Картинка про Голландский шаг в авиации что это. Фото Голландский шаг в авиации что это

Когда время реакции пилота и запаздывание системы управления совпадают с периодом собственных колебаний самолёта, непреднамеренные управляющие реакции пилота могут привести к резкому увеличению амплитуды колебаний. Поскольку эти колебания относительно высокочастотные, то амплитуда может достичь опасных значений за очень короткий промежуток времени.

При попадании в такой режим полёта наиболее эффективным действием является освобождение органов управления. Любая попытка принудительно остановить колебания только продолжит возбуждение и усилит их величину. Освобождение органов управления устраняет причину возбуждающую колебания и позволяет самолёту выйти из режима за счёт собственной динамической устойчивости.

Полёт на больших числах М.

Обычно полёт на больших числах М происходит на большой высоте. Рассмотрим влияние большой высоты на поведение самолёта. Аэродинамическое демпфирование проявляется в появлении моментов сил, препятствующих вращению самолёта относительно трех его осей. Причина появления этих моментов в изменении углов обтекания крыла, стабилизатора и киля при вращении самолёта.

Чем больше истинная скорость самолёта, тем меньше изменения углов обтекания при заданной угловой скорости вращения, и, соответственно, меньше демпфирование. Степень уменьшения демпфирования пропорциональна квадратному корню из относительной плотности воздуха. В этой же пропорции находятся индикаторная земная (EAS) и истинная (TAS) скорости. Так, например, в стандартной атмосфере на высоте 40000 футов демпфирование будет в два раза слабее, чем на уровне моря.

Обеспечение устойчивости по скорости на трансзвуковых числах М.

Когда число М полёта превышает Мкрит, над верхней поверхностью крыла образуется сверхзвуковая зона со скачком уплотнения. Это приводит к:

— смещению центра давления крыла назад, и

— уменьшению скоса потока за крылом.

Вместе, эти два фактора приводят к появлению пикирующего момента. На больших числах М самолёт становится неустойчивым по скорости. При увеличении скорости, вместо давящих усилий на штурвале возникают тянущие усилия. Это потенциально опасно, поскольку самолёт стремится опустить нос, что приведёт к дальнейшему росту скорости и ещё большему увеличению пикирующего момента. Это явление, известное как «затягивание в пикирование» (Mach Tuck), ограничивает максимальную эксплуатационную скорость современных транспортных самолётов.

Для сохранения требуемого градиента усилий на штурвале по скорости в систему управления современных самолётов встраивают устройство, компенсирующее данный момент (Mach trim).

При увеличении числа М, данное устройство может:

— отклонять руль высоты вверх;

— перекладывать отклоняемый стабилизатор носком вниз или

— смещать центр тяжести самолёта перекачкой топлива в задний бак.

Данное действие происходит без вмешательства лётчика таким образом, чтобы самолёт имел небольшую тенденцию к увеличению угла тангажа, и для сохранения горизонтального полёта требовалось приложить к штурвалу давящие усилия.

Какой именно метод используется, зависит от производителя самолёта. Данная система регулирует усилия в продольном канале управления и работает только на больших числах М.

Заключение

Устойчивость – это качество присущее самолёту и позволяющее ему в условиях воздействия возмущений возвращаться к исходному режиму полёта. Различают два вида устойчивости статическую и динамическую. В каждом из этих видов самолёт может оказаться устойчивым, нейтральным или неустойчивым.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *