Изолятор опорный для чего
Изоляторы для электротехнических установок
Линейные изоляторы служат для крепления проводов воздушных электрических линий и шин открытых распределительных устройств.
Конструктивно и по назначению изоляторы подразделяются на штыревые, подвесные, опорные и проходные.
Штыревые изоляторы состоят из одного или двух фарфоровых элементов и армируются на металлических штырях, закрепляемых в траверсах опор. Все штыревые изоляторы обеспечивают жесткое крепление проводов на опорах.
Линейные подвесные изоляторы обеспечивают нежесткую связь проводов с опорами ЛЭП. Тарельчатые подвесные изоляторы соединяются в гирлянды. Кроме тарельчатых, находят применение стержневые линейные изоляторы, позволяющие повысить электрическую прочность благодаря тому, что они не подвержены пробою.
Опорные изоляторы служат для поддержания шин и контактных деталей РУ и электрических аппаратов.
Опорно-штыревые изоляторы состоят из одного, двух или трех фарфоровых элементов, жестко соединенных друг с другом и закрепленных на чугунном штыре. Применяются в качестве изоляционных опор в ОРУ, в связи с чем имеют выступающие крылья для защиты от атмосферных осадков.
Опорно-стержневые изоляторы тоже предназначены для работы в наружных установках. Такой изолятор представляет собой сплошной фарфоровый стержень с выступающими крыльями, на торцевых частях которого закреплены чугунные колпаки для соединения изоляторов в колонки и для крепления их на аппаратах и в РУ.
Проходные изоляторы применяются для вывода проводников ВН из баков трансформаторов, масляных и воздушных выключателей, а также для изоляции проводов, проходящих через стены зданий. Они состоят из фарфорового элемента, через внутреннюю полость которого пропущен токоведущий металлический стержень или группа шин.
Изоляторы должны удовлетворять следующим требованиям : обеспечивать достаточную электрическую прочность, определяемую напряженностью электрического поля (кВ/м), при которой материал изолятора теряет свойства диэлектрика, обладать достаточной механической прочностью, дающей возможность противостоять динамическим усилиям, которые возникают между отдельными токоведущими частями при коротком замыкании в цепи, обеспечивать неизменность своих свойств под влиянием окружающей среды (дождь, снег и т. п.), обладать достаточной теплостойкостью, то есть не изменять своих электрических свойств при изменении температуры в определенных пределах, иметь поверхность, устойчивую против воздействия электрических разрядов.
К электрическим характеристикам изоляторов относятся : номинальное и пробивное напряжения (минимальное напряжение, при котором происходит пробой изолятора), разрядные и выдерживаемые напряжения промышленной частоты в сухом состоянии (сухо-разрядное, при котором происходит перекрытие по поверхности изолятора без потери изоляционных качеств) и под дождем (мокро-разрядное, по смоченной поверхности изолятора), импульсные 50 %-ные разрядные напряжения обеих полярностей.
К основным механическим характеристикам изоляторов относятся: минимальная (номинальная) разрушающая нагрузка (в ньютонах), приложенная к головке изолятора в направлении, перпендикулярном оси, а также размеры и масса.
Линейные изоляторы предназначены для изоляции и крепления проводов на воздушных линиях и в распределительных устройствах электрических станций и подстанций. Изготавливаются они из фарфора или закаленного стекла. По конструкции изоляторы разделяют на штыревые и подвесные.
Подвесной изолятор тарельчатого типа наиболее распространен на воздушных линиях напряжением 35 кВ и выше. Подвесные изоляторы состоят из фарфоровой или стеклянной изолирующей части и металлических деталей – шапки и стержня, соединяемых с изолирующей частью посредством цементной связки.
Для воздушных линий в районах с загрязненной атмосферой разработаны конструкции изоляторов грязестойкого исполнения с повышенными разрядными характеристиками и увеличенной длиной пути утечки.
Штыревые изоляторы крепятся на опорах при помощи крюков или штырей. Если требуется повышенная надежность, то на анкерные опоры устанавливают не один, а два и даже три штыревых изолятора.
Для крепления изолятора к основанию и шин или токоведущих частей аппаратов к изолятору используют металлическую арматуру, то есть металлические части, закрепленные на фарфоре. Арматуру закрепляют на фарфоре чаще всего при помощи различного рода цементирующих замазок с коэффициентом объемного теплового ресширения, близким к коэффициенту фарфора. В целях улучшения качества изоляторов их фарфоровый корпус с внешней стороны покрывают глазурью.
Изоляторы, рассчитанные на меньшую механическую нагрузку, не имеют фланцев и головок. У них предусмотрены металлические фасонные вкладыши с резьбовыми отверстиями, укрепленные в углублениях фарфорового стержня. Эти изоляторы благодаря внутренней заделке арматуры имеют меньшие размеры и массу.
Опорно-штыревые изоляторы серии ОНШ предназначены для наружной установки. Они имеют фарфоровое тело с далеко выступающими ребрами (крыльями) для защиты от дождя. Изолятор укрепляют на основании при помощи чугунного штыря с фланцем. Сверху предусмотрен чугунный колпак с нарезными отверстиями для крепления токоведущих частей.
Проходные изоляторы на напряжение 110 кВ и выше, так называемые «вводы», кроме фарфоровой, имеют маслобарьерную или в более новых конструкциях бумажно-масляную изоляцию. В последнем случае на токоведущий стержень наложены слои кабельной бумаги с проводящими прокладками из алюминиевой фольги между ними (конденсаторный ввод). Конденсаторный ввод обеспечивает равномерное распределение потенциала как вдоль оси, так и в радиальном направлении. Эти вводы обычно герметизированы.
Опорные изоляторы
Опорные изоляторы предназначены для изоляции и крепления токоведущих частей в электрических аппаратах, распределительных устройствах электрических станций и подстанций и в комплектных распределительных устройствах. Опорные изоляторы подразделяются на опорно-стержневые и опорно-штыревые.
Опорно-стержневые изоляторы имеют сплошной или полый фарфоровый стержень с выступающими ребрами, рисунок 4.11. Снизу и сверху предусмотрены металлические детали (армировка) для крепления изолятора на основании и крепления проводника на изоляторе. Изоляторы, рассчитанные на значительную механическую нагрузку, рисунок 4.11,а, снизу имеют овальные или квадратные фланцы с отверстиями для болтов, а сверху – металлические головки с нарезанными отверстиями для крепления проводника. Элементы арматуры охватывают тело изолятора и соединены с фарфором цементным раствором. Изоляторы, рассчитанные на меньшую механическую нагрузку, рисунок 4.11,б, не имеют фланцев и головок. Вместо них предусмотрены металлические фасонные вкладыши с резьбовыми отверстиями, укрепленные в углублениях фарфорового стержня. Такие изоляторы имеют меньшие размеры и массу. Для повышения разрядных напряжений изолятора на боковой поверхности имеется одно (для U = 6 – 10 кВ), два (20 кВ) или три (35 кВ) небольших ребра.
Для помещений с повышенной влажностью и загрязненностью воздуха применяют конструкцию опорного изолятора с ребристой поверхностью, рисунок 4.11,в.
Опорные изоляторы имеют следующие условные обозначения: ИОР-6-375 УХЛ, Т2; ИОР-10-750 УХЛ, Т2; ИО-10-750 УЗ; ИОР-20-3000 УХЛ, Т2;ИОР-35-750 УХЛ, Т2.
Рисунок 4.11-Опорные изоляторы
Опорно-штыревые изоляторы выпускаются на классы напряжения 6, 10, 20 и 35 кВ. Конструктивно изолятор состоит из изоляционного тела, армированного верхней арматурой – колпачком изолятора, имеющем на торце резьбовые отверстия, и нижней арматурой – штырем изолятора, на котором предусмотрены отверстия для монтажа, рисунок 4.12.
Тело изолятора из электротехнического фарфора на классы напряжения 6 – 10 кВ выполняется одноэлементным, рисунок 4.12 а, б, на напряжение 20 –35 кВ – двух и трехэлементным, рисунок 4.12 г. Обозначение опорно – штыревых изоляторов включает в себя: О – опорный; Н – наружной установки; Ш – штыревой; первая цифра – номинальное напряжение, кВ; вторая цифра – механическая прочность на изгиб, даН; третья – категория исполнения. Например, изолятор типа – ОНШ-6-300-I.
Рисунок 4.12 – Опорно-штыревые изоляторы
Опорно-стержневые изоляторы для наружной установки состоят из сплошного фарфорового цилиндра с развитой боковой поверхностью, армированного верхним и нижним металлическими фланцами, рисунок 4.13.
Опорно-штыревые изоляторы выпускаются на номинальные напряжения 10, 20, 35 и 110 кВ исполнения УХЛ, Т и категории размещения I. Минимальная разрушающая сила на изгиб составляет от 300 до 2000 даН. Конструктивное исполнение изоляторов 01, 02, 03.
Опорно-стержневые изоляторы обозначаются таким образом: три буквы: И – изолятор; О – опорный; С – стержневой; первая цифра – номинальное напряжение, кВ; вторая – изгибающая сила, даН; третья – конструктивное исполнение, далее – как у опорно-штыревых изоляторов. Например, изоляторы типа ИОС-110-1000 УХЛ, TI; ИОС-35-500-03 УХЛ, TI.
Рисунок 4.13- Опорно-стержневые изоляторы наружной установки
На электрических станциях и подстанциях на более высокий класс напряжения собирают вертикальные колонки из изоляторов меньшего класса напряжения, например, на 220 кВ из пяти изоляторов на 35 кВ. Однако с увеличением числа последовательно соединенных изоляторов их механическая прочность на изгиб уменьшается. Поэтому для обеспечения необходимой механической прочности используют вертикальные сдвоенные или строенные колонки треноги, рисунок 4.13 б, оси которых располагаются под некоторым углом к вертикали.
Опорные и проходные изоляторы
Станционные и аппаратные изоляторы распределительных устройств но своему назначению и конструкции разделяются на опорные и проходные. Опорные изоляторы используются для крепления шин и токопроводов открытых и закрытых распределительных устройств и аппаратов. Проходные изоляторы применяются при переходе токопроводов сквозь стены или для ввода напряжения внутрь металлических баков трансформаторов, конденсаторов, выключателей и других аппаратов.
Основным изолирующим материалом опорных изоляторов является фарфор. В последнее время стали популярны полимерные опорные и проходные изоляторы. В проходных изоляторах на напряжение 35 кВ и выше, помимо фарфора, широко используется бумажно-масляная и маслобарьерная изоляция.
Ребристость развита слабо и служит для некоторого увеличения разрядного напряжения. Наибольшее влияние оказывает ребро, расположенное у шапки, которое несколько выравнивает поле в области наиболее высоких напряженностей, откуда начинается развитие разряда.
Рис. 1. Опорные изоляторы типа ОФ-6 для внутренней установки.
Это ребро делается наибольшим. Изоляторы с внутренней заделкой арматуры (рис. 1, б) имеют меньшие вес, высоту и несколько лучшие электрические характеристики по сравнению с изоляторами с воздушной полостью. Достигается это потому, что при внутренней заделке арматуры наибольшие напряженности наблюдаются в фарфоре, воздушная полость отсутствует, а арматура играет роль внутреннего экрана.
Рис. 2. Опорные штыревые изоляторы для наружной установки: а — ОНШ-10-500, б — ОШП-35-2000.
Стержневые изоляторы для наружной установки типа ОНС выпускаются на напряжения до 110 кВ (рис. 3). Число и размеры ребер выбираются на основании опыта. При отношении вылета ребра а к расстоянию между ребрами, равном примерно 0,5, мокро-разрядные напряжения при данном разрядном расстоянии получаются наибольшими.
Рис. 3. Стержневой опорный изолятор для наружной установки ОНС-110-300.
Применяются также стержневые опорные изоляторы с внутренней полостью. Диаметр таких изоляторов больше, чем сплошных стержневых, что обеспечивает их большую механическую прочность. Однако у таких изоляторов возможны разряды во внутренней полости, для предотвращения которых внутренние полости герметизируют с помощью фарфоровых перегородок или заливают компаундом.
На напряжение 330 кВ и выше одиночные колонки изоляторов получаются очень высокими и не обеспечивают необходимую механическую прочность на изгиб. Поэтому при этих напряжениях применяют опорные конструкции чаще всего в виде конусообразного треножника из трех колонок изоляторов. При изгибающих усилиях изоляторы в таких конструкциях работают не только на изгиб, но и на сжатие.
Напряжения по элементам высокой колонки опорных изоляторов, так же как и в подвесной гирлянде, распределяются неравномерно. Для выравнивания напряжения применяют тороидальные экраны, закрепляемые на верхнем элементе колонки.
Рис. 4. Опорно-стержневые изоляторы ОС
Проходные изоляторы на напряжение 6 — 35 кВ изготавливаются чаще всего фарфоровыми. Конструктивное их выполнение определяется напряжением, током, допустимой механической нагрузкой на изгиб и окружающей средой.
Изолятор (рис. 5) состоит из фарфорового тела цилиндрической формы 1, плотно скрепленного с помощью армированных на цементе металлических концевых колпачков 2 с токоведущим стержнем 3. Фланец 4 служит для крепления изолятора к стене здания или корпусу аппарата. Так же как и изоляторы других типов, проходные выполняются таким образом, что бы напряжение пробоя было выше напряжения перекрытия вдоль поверхности.
Напряжение пробоя фарфоровых проходных изоляторов зависит от толщины фарфора. Однако конструкция таких изоляторов практически определяется необходимой механической прочностью, расчетным напряжением перекрытия и мерами по устранению короны.
Изоляторы на 3—10 кВ выполняются с внутренней воздушной полостью 5.
Рис. 5. Проходные фарфоровые изоляторы: а — на напряжения 6 — 10 кВ для внутренней установки, б — на напряжение 35 кВ сплошной конструкции для наружной установки.
Специальных мер для устранения возможности коронирования при таких напряжениях принимать не надо. При напряжениях 20—35 кВ возможно появление короны у стержня напротив фланца, где наблюдается наибольшая напряженность поля в воздухе. Для предотвращения коронирования изоляторы на такие напряжения изготавливаются без воздушной полости (рис. 5, б). При этом наружная поверхность фарфора металлизируется и соединяется со стержнем.
Для устранения возможности появления разрядов у фланца фарфоровая поверхность под ним также металлизируется и заземляется. Напряжение возникновения скользящих разрядов от фланца вдоль поверхности фарфора и, следовательно, напряжения перекрытия по поверхности могут быть увеличены снижением поверхностной емкости. Для этого или увеличивают диаметр изолятора у фланца, или поверхность изолятора выполняют ребристой, располагая более массивные ребра вблизи фланца.
Рис. 6. Полимерный проходной изолятор на 10 кВ
Изоляторы, предназначенные для ввода напряжения из одной среды в другую (воздух — масло и т. д.), выполняются несимметричными относительно фланца. Например, путь перекрытия в масле можно брать в 2,5 раза меньшим, чем в воздухе. Ввод, один конец которого находится в помещении, а второй — на открытом воздухе, изготавливается также несимметричным, наружная часть имеет более развитую ребристость для увеличения мокроразрядного напряжения.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Типы изоляторов. Основные характеристики
Электрические изоляторы предназначены для крепления шин, проводов и прочих токоведущих элементов к корпусу электроустановки, консолям опор и прочим конструкциям. Помимо этого они изолируют проводники при прохождении через стены, позволяют отделить электроустановки друг от друга и прочие несущие функции. Конструкция и размеры изоляторов определяются прикладываемыми к ним механическими нагрузками, электрическим напряжением установок и условиями их эксплуатации. Все электрические изоляторы классифицируются по следующимпараметрам:
По напряжению: все изоляторы изготовляются на определенные классы напряжения (Uн, кВ): 1; 6; 10; 15; 20; 35; 110; 150; 220; 330; 400; 500; 750; 1150. Чем выше Uн изоляторов, тем больше их габариты и масса, тем они сложнее в изготовлении, монтаже и эксплуатации.
По условиям работы:
Изоляторы наружной установки, работающие на открытом воздухе, изготавливаются для районов умеренного (У), холодного (Х) и тропического (Т) климата, имеют сильно развитую поверхность юбки с большим количеством ребер. Ребра служат для увеличения длины пути тока утечки с целью повышения разрядных напряжений изоляторов под дождем и в условиях увлажненных загрязнений.
Изоляторы внутренней установки (для работы в помещениях) имеют гладкую поверхность или небольшие ребра, изготовляются на напряжения 35кВ и ниже. Для закрытых РУ (ЗРУ) более высоких классов напряжения (110 и 220кВ) используются изоляторы наружной установки на соответствующие номинальные напряжения.
По назначению и расположению токоведущей части:
Опорные изоляторы
Опорные изоляторы внутренней установки предназначены для изоляции и крепления токоведущих частей в электрических аппаратах и распределительных устройствах.
Шинные изоляторы типа «бочонок» применяются для крепления токопроводящих шин внутри силовых шкафов или других устройств, для неподвижной фиксации и изоляции частей, находящихся под напряжением, от корпуса и панелей сборки с последующим подключением силовых проводников для распределения электроэнергии внутри щита. Крепление шинного изолятора осуществляется с помощью болта.
Изоляторы опорно-стержневые наружной установки предназначены для изоляции и крепления токоведущих частей в электрических аппаратах и распределительных устройствах электрических станций и подстанций переменного тока напряжением 10 – 35 кВ частотой до 100 Гц при температуре окружающего воздуха от – 60 0 С до + 50 о С в районах 1-4 степени загрязнения, например на объектах РЖД.
Опорно-штыревые изоляторы применяются для наружных установок в тех случаях, когда требуется высокая механическая прочность и опорно-стержневые применены быть не могут. Штыревые линейные изоляторы на напряжение 6-10 кВ состоит из фарфоровой или стеклянной изолирующей детали, в который ввертывается металлический крюк или штырь. Механическая прочность изолятора такого типа определяется прочностью его штыря, а не изоляционного тела, так как изгибающий момент, из-за малого плеча много меньше изгибающего момента приложенного к щтырю.
Проходные изоляторы
Изоляторы проходные внутренней установки предназначены для устройства переходов токоведущих линий сквозь стены либо для ввода электрических проводов внутрь блоков различной аппаратуры, для изоляции и соединения токоведущих частей закрытых распределительных устройств с открытыми распределительными устройствами.
Изоляторы тупиковые внутренней установки — частный случай проходного изолятора. Конструктивно тупиковые изоляторы похожи на проходные, но вместо сквозных отверстий в них предусматривается глухая стенка с торцевыми креплениями для закрепления проводников. Изоляторы тупиковые применяются в крайних ячейках секции КРУ для фиксации сборных шин.
Изоляторы проходные для установки на открытом воздухе – штыревые, стержневые, тарельчатые. Проходные изоляторы, предназначенные для наружной установки, имеют более развитую поверхность той части изолятора, которая располагается вне помещения. Проходные изоляторы внешней установки предназначены для изоляции от токоведущих частей закрытых распределительных устройств.
Тяговые изоляторы
Тяговые изоляторы или тяги изолирующие используются в электрических аппаратах для передачи движения от одних частей к другим, которые находятся под разными потенциалами. Изоляторы тяговые применются в разъединителях и выключателях нагрузки напряжением.
Линейные изоляторы наружной установки
Линейные изоляторы служат для изоляции проводов и тросов и крепления их к опорам линии электропередачи. В условиях эксплуатации изоляторы находятся под электрическим напряжением и одновременно воспринимают механическую нагрузку от массы проводов, гололедных отложений, напора ветра, вибрации, «пляски» а также тяжения проводов. Поэтому линейные изоляторы наряду с электрической должны обладать достаточной механической прочностью, которая обычно характеризуется допустимой механической нагрузкой. По конструкции линейные изоляторы производятся штыревые, тарельчатые, стержневые, орешковые, анкерные. ( НТЦ ЭНЕРГО-РЕСУРС линейные изоляторы не производит ).
По материалу изготовления:
Фарфоровые изоляторы. Изготавливаются из электротехнического фарфора, поверх которого наносится слой глазури. После этого изделия обжигают в печах.
Стеклянные изоляторы. Производятся из особого закаленного стекла. В отличие от фарфоровых изоляторов, они обладают высокой механической прочностью, меньшими весом и габаритными размерами, большим сроком эксплуатации. Изоляторы из стекла стоят дороже аналогичных изделий из фарфора.
Полимерные изоляторы. Для производства используются особые пластические массы. Данные изделия предназначаются для изоляции и механического крепления токоведущих частей в электрических устройствах, а также для монтажа токоведущих шин распределительных механизмов электростанций.
Стеклянные и фарфоровые изоляторы во многом уступают полимерным изоляторам, которые более устойчивые к загрязнениям, температурным воздействиям и актам вандализма.
Основные характеристики изоляторов:
Разрядные напряжения:
Геометрические параметры и вес:
Механические характеристики:
Термостойкость: стойкость к резким изменениям температуры для изоляторов наружного применения. Для изоляторов внутренней установки как правило задается температурный диапазон эксплуатации.
По теме
Популярные товары
Для чего нужны электрические изоляторы
Электрические изоляторы – это диэлектрические детали, используемые на электроустановках и сетях. В предлагаемом материале рассматриваются особенности назначения, основных технических характеристик, классификации, эксплуатации и обслуживания этих элементов.
Назначение
Назначение электрических изоляторов состоит в предотвращении контакта проводников с крепежными деталями при прокладке сетей. Эти компоненты надежно отделяют несущие металлоконструкции от проводов, находящихся под напряжением.
Основные технические характеристики, по которым выбираются изоляторы
Согласно действующим нормативам, подбор электрических изоляторов осуществляется по следующим техническим характеристикам:
Из партии произведенных на заводе изоляторов, испытаниям подвергают только 0,5 % продукции. Все изготовленные элементы проверяют подачей перекрывающего напряжения на три минуты, с образованием искровых разрядов.
Расшифровка
Изделия соответствующим образом маркируют. В обозначении буквы и цифры указывают на характеристики и конструктивные особенности изоляторов. Пример расшифровки изолятора типа НСПКр 120 – 3/0,6 – Б.
Классификация
Надежность работы электрических установок и сетей можно при условии использования изолирующих элементов соответствующей конструкции и характеристик. Предусмотрено несколько принципов, по которым классифицируют изоляторы.
По напряжению
В зависимости от номинальной величины напряжения, изолирующие элементы подразделяют на 14 классов по значению данной характеристики в линиях или электроустановках от 1 до 1 150 кВт.
По назначению
С учетом назначения, изолирующие элементы могут быть:
Данный вид классификации определяет особенности применения изоляторов.
По материалу
Корпус изолятора может быть выполнен из следующих материалов:
Для каждого материала характерны свои плюсы и минусы, что влияет на характер использования.
По способу крепления
В зависимости от способа крепежа, изоляторы бывают:
Каждый из перечисленных видов отличается собственным конструктивным устройством.
Прочие принципы классификации
Также изоляторы, с учетом условий эксплуатации, различают на наружные, используемые на открытом воздухе, и внутренние – устанавливаемые внутри помещений или электроустановок.
Обслуживание и эксплуатация изоляторов
Изоляторы подбирают по конструкции и характеристикам, с учетом условий эксплуатации. В процессе применения, эти элементы воздушных линий или электроустановок осматривают вместе с остальным оборудованием.
Периодичность осмотров устанавливают, в зависимости от особенностей элементов. Проверку проводят не реже одного раза в полгода, если речь идет о наружных линиях электропередач. Изолирующие элементы в установках можно проверять реже, в регламентные сроки освидетельствования агрегатов.
Если линия электропередач проходит через места сильных загрязнений или ответственные участки (промышленные районы, жилые массивы и пр.), периодичность осмотров сокращают до 1 раза в квартал.
В ходе осмотра необходимо убедиться в целостности изоляторов, надежности крепления, очистить детали от пыли и загрязнений. Дефектные элементы заменяют на целые. Ревизию проводят при отключении подачи электроэнергии.
Электрические изоляторы – незаменимые элементы линий электропередач и электрооборудования. Но для их надежной эксплуатации требуется правильный подбор и соблюдение действующих норм при проверке и обслуживании.