какие легирующие добавки повышают коррозионную стойкость сплава
Легирующие элементы в жаропрочных сплавах
В статье рассказывается про применение различных легирующих элементов при производстве жаропрочных сталей и сплавов. |
Практически все жаропрочные сплавы создаются на металлургических производствах с использованием технологии легирования. Сущность технологии заключается в расширении химического состава и усложнении структуры базовой основы сплава путем введения в него различных легирующих элементов. В конечном итоге сплав приобретает жаропрочность – способность длительное время сохранять механическую прочность и коррозионную стойкость при высоких температурах эксплуатации.
Принцип повышения жаропрочности сплавов
Пластическая деформация и разрушение сплава при интенсивном нагреве объясняется ослаблением и нарушением межатомных связей и диффузной ползучестью материала, краевой дислокацией в структуре кристаллической решетки. Чтобы сделать сплав жаропрочным, необходимо стабилизировать его структуру, предотвратить или свести к минимуму деформационные процессы, протекающие под воздействием высоких температур.
Для решения этих задач сплавы упрочняют легирующими элементами, которые повышают энергию, прочность и стабильность кристаллических связей, замедляют диффузию, оказывая влияние на увеличение размера зерен и упрочнение их границ, препятствуют рекристаллизации. Для наибольшего эффекта легирование выполняется не одним, а несколькими химическими элементами, которые помимо жаропрочности придают сплаву дополнительные технологические свойства.
Выбор легирующих элементов для жаропрочных сплавов
Выбор химических элементов для легирования сплава с целью повышения его жаропрочности определяется свойствами, которые ему необходимо придать. Среди часто применяемых для легирования элементов можно назвать никель (Ni), вольфрам (W), молибден (Mo), ванадий (V), кобальт (Co), ниобий (Nb), титан (Ti). Каждый по-своему влияет на физические и химические характеристики сплава, поэтому, как правило, они вводятся в базовый состав комплексно, в различных комбинациях и пропорциях.
Например, молибден, титан и ниобий являются карбидообразователями. Связывая содержащийся в сплаве углерод в прочные карбиды, они обеспечивают эффективное торможение дислокаций и диффузий, усиливают межатомные связи, способствую формированию более стабильной структуры материала и повышению его жаропрочности. Наличие в сплаве никеля обуславливает его сопротивление к окислению на воздухе, а в комбинации с кобальтом, никель способствует повышению длительной прочности сплава.
Ферросплавы как наиболее эффективная форма легирования жаропрочных сплавов
В металлургии для получения разных марок жаростойких сплавов, используют специальные полупродукты на основе железа (Fe), содержащие определенный процент необходимого легирующего элемента – ферросплавы. Вводимые в жидкую субстанцию того или иного металла, ферросплавы, в виде чушек, блоков или гранул, значительно упрощают технологическую схему и сам процесс корректировки химического состава жаростойкого сплава.
Необходимо отметить, что ферросплавами условно называют и те полупродукты, где железо не является базовой основой, а содержится лишь в виде примеси. Сортамент ферросплавов для легирования жаростойких металлов весьма разнообразен. Наиболее важными ферросплавами в современной металлургии являются ферроникель, ферровольфрам, ферромолибден, феррованадий, феррониобий, ферротитан, феррокобальт.
Роль легирующих элементов в составе жаропрочных сплавов
Рисунок 1. Сводная таблица легирующих элеменнтов.
Никель
Никель повышает пластичность, вязкость, теплоемкость сплава, увеличивает его сопротивляемость к образованию трещин и коррозии, улучшает возможности термообработки. В связи с этим ферроникель – один из самых распространенных и востребованных ферросплавов глобальной металлургической отрасли. Мировые стандарты определяют пять марок ферроникеля, содержащего 20-70% никеля, плюс незначительное количество углерода (С), серы (S), фосфора (Р), кремния (Si), хрома (Cr), меди (Cu).
Легированные никелем жаропрочные сплавы, как правило, содержат 8-25% никеля, а некоторые до 35% и более. Однако из-за того, что никель снижает твердость сплава, для легирования его обычно используют не в чистом виде, а в сочетании с железом, хромом, молибденом, титаном, ниобием и другими элементами. В качестве примера можно привести сплавы марок 12Х18Н9Т (Fe – около 61%) и 10Х17Н13МЗТ (Fe – около 67%) с содержанием никеля 8-9,5% и 12-14% соответственно.
Молибден и вольфрам
На физические характеристики сталей и сплавов вольфрам и молибден оказывают схожее влияние, существенно увеличивая предел длительной механической прочности при температурах до 1800°C (в вакууме). Достаточно ввести 0,3-0,5% этих элементов в сплав, чтобы заметно усилить его сопротивление ползучести, укрепить межатомные связи кристаллической решетки, повысить температурный предел рекристаллизации. Для сталеплавильной и литейной промышленности производят легирующие ферросплавы из молибдена и вольфрама с железом: ферромолибден (55-60% Мо) и ферровольфрам (65-85% W).
Для легирования в сплавы обычно вводят относительно небольшое количество молибдена (около 0,2-20%) и вольфрама (до 10-12%), поскольку переизбыток этих элементов способен повысить хрупкость сплава при нагреве. В качестве примера сплава, легированного молибденом и вольфрамом можно привести жаропрочную низколегированную сталь 12Х1МФ (Fe – около 96%) с содержанием Мо 0,25-0,35 процента. В этом же ряду жаропрочная релаксационностойкая сталь 20Х3МВФ (Fe – около 93%) содержащая Мо 0,35-0,55% и W 0,3-0,5%, а также сплав на основе никеля ХН57МТВЮ (Мо 8.5-10%, W 1.5-2.5%, Fe 8-10% и т.п.)
Ванадий
Для легирования в сплавы обычно вводят относительно небольшое количество молибдена (около 0,2-20%) и вольфрама (до 10-12%), поскольку переизбыток этих элементов способен повысить хрупкость сплава при нагреве. В качестве примера сплава, легированного молибденом и вольфрамом можно привести жаропрочную низколегированную сталь 12Х1МФ (Fe – около 96%) с содержанием Мо 0,25-0,35 процента. В этом же ряду жаропрочная релаксационностойкая сталь 20Х3МВФ (Fe – около 93%) содержащая Мо 0,35-0,55% и W 0,3-0,5%, а также сплав на основе никеля ХН57МТВЮ (Мо 8.5-10%, W 1.5-2.5%, Fe 8-10% и т.п.)
С целью повышения характеристик по жаропрочности, состав легирующих элементов усложняется, часто вместе с ванадием в сплав вводятся молибден, хром, никель и т.п. Показательным примером такой технологии легирования может служить жаропрочный сплав на основе железа марки 12Х2МФСР (Fe – около 95%) с содержанием V 0,2-0,35%, Мо 0,5-0,7%, Cr 1,6-1,9%, Ni до 0,25% и т.д. Еще один пример мультилегирования сплава с применением ванадия – жаропрочная сталь 15Х2М2ФБС, включающая в себя V 0,25-0,4%, Мо 1,2-1,5 %, Cr 1,8-2,3%, Ni до 0,3% и т.д.
Специальные ферросплавы
Например, феррониобий применяется для легирования жаропрочных хромоникелевых сталей, поскольку ниобий эффективно препятствует межкристаллитной коррозии, разрушающей границы зерна и ведущей к потере прочности материала. В свою очередь ферротитан вводится в жаропрочные сплавы для усиления общих антикоррозийных характеристик. Кроме того, титан улучшает свариваемость нержавеющих сталей. Легирование жаропрочных сплавов феррокобальтом позитивно сказывается на их релаксационной стойкости, особенно это касается хромистых сталей.
телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95
Легирующие добавки в стали
Легированная сталь — это сталь, содержащая специальные легирующие добавки, которые позволяют в значительной степени менять ряд ее механических и физических свойств. В данной статье мы разберемся, что из себя представляет классификация легированных сталей, а также рассмотрим их маркировку.
Круглый прокат из легированной стали
Классификация легированных сталей
По содержанию в составе стали углерода идет разделение на:
В зависимости от общего количества в их составе легирующих элементов, которые содержит легированная сталь, она может принадлежать к одной из трех категорий:
Свойства, которыми обладают легированные стали, определяет и их внутренняя структура. Поэтому признаку классификация легированных сталей подразумевает разделение на следующие классы:
По своему практическому применению легированные конструкционные стали могут быть: конструкционные (подразделяются на машиностроительные или строительные), инструментальные, а также стали с особыми свойствами.
Назначение конструкционных легированных сталей:
Классификация машиностроительных легированных сталей выглядит следующим образом.
Зависимость толщины цементованного слоя от температуры и времени обработки
Классификация строительных легированных сталей подразумевает их разделение на следующие виды:
Применение инструментальных легированных сталей
Инструментальная легированная сталь широко используется при производстве разнообразного инструмента. Но помимо явного превосходства над углеродистой сталью в плане твердости и прочности, у легированной стали есть и слабая сторона — более высокая хрупкость. Поэтому для инструмента, который активно подвергается ударным нагрузкам, такие стали не всегда подходят. Тем не менее при производстве огромного перечня режущего, ударно-штампового, измерительного и прочего инструмента именно инструментальные легированные стали остаются незаменимыми.
Отдельно можно отметить быстрорежущую сталь, отличительными особенностями которой являются крайне высокая твердость и красностойкость до температуры 600 градусов. Такая сталь способна выдерживать нагрев при высокой скорости резания, что позволяет увеличить скорость работы металлообрабатывающего оборудования и продлить срок его службы.
К отдельной категории относятся легированные конструкционные стали, наделенные особыми свойствами: нержавеющие, с улучшенными электрическими и магнитными характеристиками. От того, какие элементы, а также в каких количествах преимущественно содержатся в них, они могут быть хромистыми, никелевыми, хромоникельмолибденовыми. Также они делятся на трех-, четырех- и более компонентные по числу содержащихся в них легирующих добавок.
Легирующие элементы и их влияние на свойства сталей
Маркировка легированных сталей указывает на то, какие добавки в ней содержатся, а также на их количественное значение. Но также важно знать и то, какое именно влияние на свойства металла оказывает каждый из этих элементов в отдельности.
Добавка хрома увеличивает коррозионную стойкость, повышает прочность и твердость, является основным компонентом при создании нержавеющей стали.
Добавление никеля повышает пластичность, вязкость стали и коррозионную стойкость.
Титан уменьшает зернистость внутренней структуры, повышая прочность и плотность, улучшает обрабатываемость и коррозионную стойкость.
Присутствие ванадия уменьшает зернистость внутренней структуры, что повышает текучесть и порог прочности на разрыв.
Добавка молибдена дает возможность улучшить прокаливаемость, повысить коррозионную устойчивость и снизить хрупкость.
Вольфрам повышает твердость, не дает зернам увеличиваться при нагреве и снижает хрупкость при отпуске.
При содержании до 1-15% кремний повышает прочность, сохраняя вязкость. При увеличении процента содержания кремния повышается магнитопроницаемость и электросопротивление. Также данный элемент увеличивает упругость, стойкость к коррозии и сопротивляемость к окислению, но также повышает хрупкость.
Введение кобальта увеличивает ударопрочность и жаропрочность.
Добавление алюминия способствует повышению окалиностойкости.
Таблица назначения некоторых видов стали
Отдельно стоит упомянуть примеси и их влияние на свойства сталей. Любая сталь всегда содержит технологические примеси, так как полностью удалить их из состава стали чрезвычайно трудно. К такого рода примесям относятся углерод, серу, марганец, кремний, фосфор, азот и кислород.
Оказывает на свойства стали очень значительное влияние. Если его содержится до 1,2%, то углерод способствует повышению твердости, прочности, предела текучести металла. Превышение указанного значения способствует тому, что начинает значительно ухудшаться не только прочность, но и пластичность.
Если количество марганца не превышает 0,8%, то он считается технологической примесью. Он призван повысить степень раскисления, а также противостоять негативному влиянию серы на сталь.
При превышении содержания серы выше 0,65% механические свойства стали существенно снижаются, речь идет об уменьшении уровня пластичности, коррозионной стойкости, ударной вязкости. Также высокое содержание серы негативно влияет на свариваемость стали.
Даже незначительное превышение содержания фосфора выше необходимого уровня чревато повышением хрупкости и текучести, а также снижением вязкости и пластичности стали.
При превышении определенных количественных значений в составе стали вкрапления данных газов повышают хрупкость, а также способствуют понижению ее выносливости и вязкости.
Слишком большое содержание водорода в стали ведет к увеличению ее хрупкости.
Маркировка легированных сталей
К категории легированных относится большое разнообразие сталей, что и вызвало необходимость в систематизации их буквенно-цифрового обозначения. Требования к их маркировке оговаривает ГОСТ 4543-71, согласно которому сплавы, наделенные особыми свойствами, обозначаются маркировкой, где на первой позиции стоит буква. По этой букве как раз и можно определить, что сталь по своим свойствам относится к определенной группе.
Пример расшифровки маркировки легированной стали
Так, если маркировка легированных сталей начинается с букв «Ж», «Х» или «Е» — перед нами сплав нержавеющей, хромистой или магнитной группы. Сталь, которая относится к нержавеющей хромоникелевой группе, обозначается буквой «Я» в ее маркировке. Сплавы, относящиеся к категории шарикоподшипниковых и быстрорежущих инструментальных, обозначаются буквами «Ш» и «Р».
Стали, относящиеся к легированным, могут принадлежать к категории высококачественных, а также особо высококачественных. В таких случаях в конце их марки ставится буква «А» или «Ш» соответственно. Стали, которые обладают обычным качеством, таких обозначений в своей маркировке не имеют. Специальное обозначение также имеют сплавы, которые получены прокатным методом. В таком случае в маркировке присутствует буква «Н» (нагартованный прокат) или «ТО» (термически обработанный прокат).
Точный химический состав любой легированной стали можно посмотреть в нормативных документах и справочной литературе, но получить такую информацию позволяет и умение разбираться в ее маркировке. Первая цифра позволяет понять, сколько углерода (в сотых долях процента) содержит легированная сталь. После этой цифры в марке перечисляются буквенные обозначения легирующих элементов, которые содержатся дополнительно.
Обозначение легирующих элементов в маркировке стали
После каждой такой буквы проставляется количественное содержание указанного элемента. Выражается это содержание в целых долях. После буквы, обозначающей элемент, может не стоять никакой цифры. Означает это то, что его содержание в стали не превышает 1,5%. Государственный стандарт 4543-71 регламентирует обозначение легирующих добавок, входящих в состав легированной стали: А — Азот, Б — Ниобий, В —Вольфрам, Г — Марганец, Д — Медь, К — Кобальт, М — Молибден, Н — Никель, П — Фосфор, Р — Бор, С — Кремний, Т — Титан, Ц — Цирконий, Ф — Ванадий, Х — Хром, Ю — Алюминий.
Использование легированных сталей
Сегодня сложно найти сферу жизни и деятельности, в которых бы не использовалась легированная сталь. Из инструментальных и конструкционных сталей производится практически любой инструмент: резцы, фрезы, штампы, измерительные устройства, шестерни, пружины, подвески, растяжки и многое другое. Нержавеющие легированные стали активно используются и в быту, из них изготавливают посуду, корпуса и другие элементы многих видов бытовой техники.
Легированные стали по причине их высокой стоимости используются только для производства самых ответственных конструкций и деталей, где изделия из других металлов просто не смогут выполнить возложенные на них задачи.
Широкое использование сталей в различных отраслях промышленности вызвало активные научно-изыскательские работы в области улучшения качества этих материалов.
Кроме повышения степени очистки сталей от вредных примесей и проведения различной термической обработки готовых изделий, нашли широкое применение различные добавки к стали, повышающие качество и придающие новые свойства. Эти добавки принято называть легирующими, в случае их содержания более 0,2-0,5%.
Легирующие добавки изменяют структуру кристаллической решетки сталей, размер зерна, параметры кристаллической решетки. Как за счет донорного или акцепторного влияния на соседние атомы железа, так и за счет разнице в размерах атомов, их валентности, доступности электронных оболочек предвнешнего электронного слоя. Что оказывает влияние на возможность образования донорно-акцепторных связей атома с атомами железа и неметаллических включений. Большинство легирующих добавок, так или иначе, влияют на распределение неметаллических включений между объемом структурного зерна и приграничным слоем зерна. Например, марганец повышает растворимость углерода в железе и смещает равновесие в сторону образования цементита. При этом, он измельчает структурное зерно и уменьшает толщину и влияние пограничного слоя.
Обычно, сложно установить все аспекты влияния данной добавки на свойства стали. Поэтому, как правило, изменение свойств сталей определяют экспериментальным путем, а механизм влияния добавки на те или иные свойства определяют на основании логики и косвенных исследований структуры и свойств материала. При этом, готовят набор сталей с различным содержанием этой добавки и проводят испытания свойств стали (красностойкость, ударная вязкость, твердость, размер зерна, толщина межзерновых прослоек, электрическое сопротивление и др.).
На основании комплекса этих мероприятий и, конечно же, логики, ранее проведенных исследований других сталей (содержащих данную добавку) и здравого смысла, формулируют механизм влияния добавки на структуру и свойства материала.
Это необходимо, как для лучшего понимания процесса, так и для прогнозирования свойств новых сплавов, составления рецептур материалов с заданными свойствами.
Вот перечень наиболее распространенных легирующих добавок, применяемых в промышленности.
Никель («Н”). Как и хром, повышает твердость и жесткость стали. Измельчает структурное зерно, незначительно уплотняет кристаллическую структуру, но уменьшает количество микрополостей и дефектов металла, так как является хорошим раскислителем. При этом несколько увеличивается плотность сталей. При содержании более 1% начинает оказывать антикоррозионное действие. Наиболее коррозионностойкие стали содержат одновременно никель и хром. Первое широкое применение нашел для легирования корабельной брони, в 80-е годы 19-го века.
Следует отметить, что и никель и хром повышают минимальную температуру закалки стали, при этом повышая эффективность закалки.
Ванадий («Ф”). Повышает плотность структуры и дает дополнительную трехмерную сшивку кристаллической решетки. За счет этого достигается повышение твердости и жесткости, но, хотя износостойкость и усталостная прочность остаются на высоком уровне, несколько снижается ударная вязкость. Впервые ванадий нашел широкое применение в конце 19-го века в качестве упрочняющей добавки для режущего инструмента и бронебойных сердечников снарядов крупных калибров.
Кремний («С”). Вводится специально в количестве более 1%, для увеличения энергии связей в кристаллической решетке. При этом значительно повышается прочность при хорошей вязкости. При этом повышается трехмерная жесткость структуры, что приводит к высокой упругости закаленной стали и повышает коррозионную стойкость при высоких температурах. При большом содержании кремния происходит накопление в структуре стали псевдосолевых структур, что приводит к повышению электрического сопротивления. При содержании кремния 20-40% наблюдается повышение магнитопроводности материала, что используется в электротехнических сталях.
Марганец («Г”). Способствует повышению растворимости углерода в железе с образованием цементита. При этом, более равномерно распределяются неметаллические примеси, что уменьшает толщины межзерновых прослоек. В результате, содержание марганца в пределах 1-3% приводит к росту твердости и жесткости стали, почти без потери пластичности (упругость увеличивается пропорционально твердости). Содержание марганца значительно больше 3% приводит к существенному росту жесткости стали, при этом пропорционально увеличивается хрупкость. Этого можно несколько избежать при высокой степени очистки стали от серы, кислорода и мышьяка и горячей обработки давлением. Примером изделия с такой обработкой может служить лезвие штык-ножа немецкого карабина Маузер к-98к, времен ВМВ.
При ударных нагрузках на сталь с высоким содержанием марганца, происходит поверхностная пластическая деформация, приводящая к измельчению структуры стали. Это дополнительно повышает твердость материала в области приложения нагрузки. Это используется, например, для изготовления траков гусеничных машин, камнедробилок и прутьев решеток в местах ограничения свободы.
Кобальт («К”). Представляет собой яркий пример влияния электронов предвнешнего электронного слоя на свойства легируемого сплава. За счет образования координационных связей вокруг атомов кобальта, происходит уплотнение структуры металла и дополнительная сшивка решетки. Это приводит к повышению жаропрочности и увеличению сопротивления ударным нагрузкам. Также улучшает намагничиваемость стали.
В быту встречается в некоторых столовых нержавеющих сталях.
Молибден («М”). Как и хром, повышает прочность и антикоррозионные свойства, жаростойкость и предел прочности на растяжение. В виду более низкой химической активности, чем железо, при значительной величине координационных связей, повышает сопротивление окислению при высоких температурах.
Легирующие свойства молибдена интенсивно изучались в 40-е годы прошлого века в советском союзе, в связи с дефицитом вольфрама для изготовления режущего инструмента. СССР первым освоил производство быстрорезов содержащих наравне с вольфрамом и молибден.
Титан («Т”). Сочетание высокой химической активности, низкой плотности электронных орбиталей и валентности, большей, чем у железа, придает титану ценные легирующие свойства. Он прекрасный раскислитель, стабилизирует ближний порядок кристаллической решетки, что способствует прочности структуры и измельчению зерна. Повышает однородность стали и сопротивление коррозии.
Ниобий («Б”). Легирующий аналог ванадия, повышает равномерность структуры и измельчает зерно уже при содержании в 0,5-2%. Применяется для нормализации структуры и снижения внутренних напряжений в ответственных деталях крупных конструкций. Применяется в основном при низком содержании в стали.
Алюминий («Ю”). Кроме раскисляющих свойств, обладает способностью снижать коррозию стали при высоких температурах, по механизму аналогичному протекторной антикоррозионной защите. При этом, создает избыток электронной плотности в массе стали, что препятствует термической эмиссии ионов железа. Также повышает плотность упаковки химических связей в структуре стали, за счет небольших размеров и разницы в электроотрицательности с железом.
Медь («Д”). Увеличивает антикоррозионные свойства при небольшом содержании в стали. За счет структурной ориентации кристаллической решетки. Используется в количестве до 2%, главным образом, в строительных сталях.
Цирконий («Ц”). Обладая более высокой активностью, чем железо и имея большие размеры атома, равномерно распределяется в структуре, ориентируя ближайшие атомы в трехмерную решетку. За счет этого, можно добиться различной зернистости стали, в зависимости от содержания циркония.
Азот («А”). Образует в стали твердые нитриды железа, которые растворяются в стали в приграничных слоях структурных зерен, покрывая зерно твердым и хрупким панцирем. При значительном содержании азота, это вызывает сильное повышение хрупкости стали. Поэтому, редко специально вводится в сталь. Широко используется для насыщения поверхностного слоя стали (0,0001- 0,1 мм ) при азотировании, что увеличивает твердость поверхности. Это применяется для режущего инструмента, подшипников и броневых сталей.
Фосфор («П”). Редко допускается содержание фосфора в легирующих приделах (0,05-0,2%), так как, он сильно повышает хрупкость стали и снижает усталостную прочность за счет повышения толщины межзерновых прослоек и снижения их прочности. Повышает рыхлость структуры стали и внутренние полости. При этом, улучшает текучести расплавленной стали (улучшает литьевые свойства и обработку в конвертерах), и уменьшает длину стружки при высокоскоростной обработки резаньем. Что важно при автоматической обработки на быстродействующих станках с программным управлением. Это, так называемые, автоматные стали: А20, А40Г, А30, А12 и др. Они идут на изготовление малоответственных деталей на высокопроизводительных металлорежущих станках с автоматической подачей заготовок.
В основной массе сталей всячески борются с высоким содержанием фосфора.
При разработке легированных сталей, следует иметь в виду, что легирующие добавки могут сильно влиять на эффект друг друга, как в одну, так и в другую сторону.
В каждой стали содержится практически вся таблица Менделеева, но, если компонента менее 0,001%, его присутствие принято не учитывать. Углерод не относят к легирующим добавкам, так как, он неотъемлемая часть любой стали.
Некоторые легирующие добавки сильно повышают стоимость стали (вольфрам, кобальт, молибден, титан и др.), а некоторые практически не влияют на стоимость (марганец, хром, алюминий и др.). В промышленности нашли широкое применение низколегированные стали, которые сочетают невысокую стоимость со значительным повышением качества, относительно углеродистых сталей обычного качества.
Для введения легирующих добавок, сталь дополнительно очищают от примесей, иначе, они могут нивелировать эффект легирования.
Влияние легирующих элементов на свойства стали
Легированными сталями называют стали, в которые для получения требуемых свойств специально вводят легирующие элементы, улучшающие ее механические, физические и химические свойства.
В качестве легирующих химических элементов используют:
Хром повышает жаростойкость и коррозионную стойкость стали, увеличивает ее электрическое сопротивление и уменьшает коэффициент линейного расширения, повышает ее прокаливае-мость.
Никель увеличивает пластичность и вязкость стали, снижает температуру порога хладоломкости и уменьшает чувствительность стали к концентраторам напряжений, повышает прокали-ваемость. В результате повышается сопротивление стали хрупкому разрушению. Так, при введении 1 % никеля снижается порог хладоломкости стали на 60—80 °С, а при введении 3 % никеля обеспечивается ее глубокая прокаливаемость.
Марганец, подобно хрому и никелю, увеличивает прокаливаемость стали, но кроме этого уменьшает и вязкость феррита. Марганец используют для частичной замены никеля с целью получения необходимого сочетания механических свойств стали и ее стоимости, с учетом меньшей стоимости марганца.
Кремний широко используют при выплавке стали как рас-кислитель. Легирование кремнием углеродистых и хромистых сталей увеличивает их жаростойкость. Так, сталь, в состав которой входит 5 % хрома и 1 % кремния, в среде печных газов по жаростойкости аналогична стали с 12 % хрома. Содержание кремния в стали ограничивают, так как он повышает склонность к тепловой хрупкости.
Вольфрам, молибден, ванадий, титан, бор и другие химические элементы вводят в сталь вместе с хромом, никелем и марганцем для дополнительного улучшения ее свойств
Молибден и вольфрам повышают прокаливаемость стали (особенно в присутствии никеля), способствуют измельчению зерна и подавлению отпускной хрупкости. Легирование стали молибденом приводит к значительному улучшению ее механических свойств после цементации.
При введении в сталь ванадия, титана, ниобия и циркония образуются труднорастворимые в аустените карбиды, что вызывает измельчение зерна, снижение порога хладноломкости, уменьшение чувствительности стали к концентраторам напряжений. Однако этот эффект проявляется лишь при малом содержании этих легирующих химических элементов в стали (до 0,15 %). При большем количестве они вызывают снижение прокаливаемости и сопротивления стали хрупкому разрушению.
Положительное влияние бора на повышение прокаливаемо-сти и прочности стали проявляется лишь при микролегировании бором (0,001—0,005 %). При повышенном содержании бора сталь становится хрупкой.
Все легирующие элементы уменьшают рост зерна аустенита. Исключение составляют марганец и бор, которые способствуют росту зерна. Остальные химические элементы, измельчающие зерно, оказывают различное влияние. Так, никель, кобальт, кремний, медь относительно слабо влияют на рост зерна; хром, молибден, вольфрам, ванадий, титан сильно измельчают зерно (элементы перечислены в порядке роста силы их действия).
При отпуске стали легирующие химические элементы замедляют процесс распада мартенсита.
Некоторые элементы, такие как никель или марганец, оказывают незначительное влияние, тогда как большинство (хром, молибден, кремний и др.) — весьма заметное.
Легированные стали классифицируют: